
Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package.
Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package.
Researchers at ORNL and the University of Tennessee, Knoxville, discovered a key material needed for fast-charging lithium-ion batteries. The commercially relevant approach opens a potential pathway to improve charging speeds for electric vehicles.
ORNL has been selected to lead an Energy Frontier Research Center, or EFRC, focused on polymer electrolytes for next-generation energy storage devices such as fuel cells and solid-state electric vehicle batteries.
Researchers at the Department of Energy’s 91°µÍø and their technologies have received seven 2022 R&D 100 Awards, plus special recognition for a battery-related green technology product.
Researchers at 91°µÍø are using state-of-the-art methods to shed light on chemical separations needed to recover rare-earth elements and secure critical materials for clean energy technologies.
New polymer materials under development at 91°µÍø could enable safer, more stable batteries needed for electric vehicles and grid energy storage.
A study led by researchers at ORNL could help make materials design as customizable as point-and-click.
ORNL, TVA and TNECD were recognized by the Federal Laboratory Consortium for their impactful partnership that resulted in a record $2.3 billion investment by Ultium Cells, a General Motors and LG Energy Solution joint venture, to build a battery cell ma
Energy storage startup SPARKZ Inc. has exclusively licensed five battery technologies from the Department of Energy’s 91°µÍø designed to eliminate cobalt metal in lithium-ion batteries.
Researchers at the Department of Energy’s 91°µÍø have received five 2019 R&D 100 Awards, increasing the lab’s total to 221 since the award’s inception in 1963.