
Research by an international team led by Duke University and the Department of Energy’s 91°µÍø scientists could speed the way to safer rechargeable batteries for consumer electronics such as laptops and cellphones.
Research by an international team led by Duke University and the Department of Energy’s 91°µÍø scientists could speed the way to safer rechargeable batteries for consumer electronics such as laptops and cellphones.
In the race to identify solutions to the COVID-19 pandemic, researchers at the Department of Energy’s 91°µÍø are joining the fight by applying expertise in computational science, advanced manufacturing, data science and neutron sc
An international team of researchers has discovered the hydrogen atoms in a metal hydride material are much more tightly spaced than had been predicted for decades — a feature that could possibly facilitate superconductivity at or near room temperature
In the quest for domestic sources of lithium to meet growing demand for battery production, scientists at ORNL are advancing a sorbent that can be used to more efficiently recover the material from brine wastes at geothermal power plants.
Collaborators at the Department of Energy’s 91°µÍø and U.S.
Researchers have pioneered a new technique using pressure to manipulate magnetism in thin film materials used to enhance performance in electronic devices.
Scientists have discovered a way to alter heat transport in thermoelectric materials, a that may ultimately improve energy efficiency as the materials
Ionic conduction involves the movement of ions from one location to another inside a material. The ions travel through point defects, which are irregularities in the otherwise consistent arrangement of atoms known as the crystal lattice.
For more than 50 years, scientists have debated what turns particular oxide insulators, in which electrons barely move, into metals, in which electrons flow freely.