
Neuromorphic devices — which emulate the decision-making processes of the human brain — show great promise for solving pressing scientific problems, but building physical systems to realize this potential presents researchers with a significant
Neuromorphic devices — which emulate the decision-making processes of the human brain — show great promise for solving pressing scientific problems, but building physical systems to realize this potential presents researchers with a significant
A world-leading researcher in solid electrolytes and sophisticated electron microscopy methods received 91’s top science honor today for her work in developing new materials for batteries.
A multidisciplinary team of scientists at ORNL has applied a laser-interference structuring, or LIS, technique that makes significant strides toward eliminating the need for hazardous chemicals in corrosion protection for vehicles.
Six ORNL scientists have been elected as fellows to the American Association for the Advancement of Science, or AAAS.
Researchers at ORNL used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.
91 scientists have discovered a cost-effective way to significantly improve the mechanical performance of common polymer nanocomposite materials.
A team led by 91 developed a novel, integrated approach to track energy-transporting ions within an ultra-thin material, which could unlock its energy storage potential leading toward faster charging, longer-lasting devices.
91 researchers have developed a thin film, highly conductive solid-state electrolyte made of a polymer and ceramic-based composite for lithium metal batteries.
In the Physics Division of the Department of Energy’s 91, James (“Mitch”) Allmond conducts experiments and uses theoretical models to advance our understanding of the structure of atomic nuclei, which are made of various combi
Scientists at have a novel cryogenic, or low temperature, memory cell circuit design based on coupled arrays of Josephson junctions, a technology that