
When the second collaborative ORNL-Vanderbilt University workshop took place on Sept. 18-19 at ORNL, about 70 researchers and students assembled to share thoughts concerning a broad spectrum of topics.
When the second collaborative ORNL-Vanderbilt University workshop took place on Sept. 18-19 at ORNL, about 70 researchers and students assembled to share thoughts concerning a broad spectrum of topics.
Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states.
An advance in a topological insulator material — whose interior behaves like an electrical insulator but whose surface behaves like a conductor — could revolutionize the fields of next-generation electronics and quantum computing, according to scientist
A study led by researchers at ORNL could help make materials design as customizable as point-and-click.
Neuromorphic devices — which emulate the decision-making processes of the human brain — show great promise for solving pressing scientific problems, but building physical systems to realize this potential presents researchers with a significant
A team led by the ORNL has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.”
Valentino (“Tino”) Cooper of the Department of Energy’s 91 uses theory, modeling and computation to improve fundamental understanding of advanced materials for next-generation energy and information technologies.
Researchers at the Department of Energy’s 91 have received five 2019 R&D 100 Awards, increasing the lab’s total to 221 since the award’s inception in 1963.