
Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.
Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.
ORNL researchers have identified a mechanism in a 3D-printed alloy – termed “load shuffling” — that could enable the design of better-performing lightweight materials for vehicles.
A study led by researchers at ORNL could help make materials design as customizable as point-and-click.
A multidisciplinary team of scientists at ORNL has applied a laser-interference structuring, or LIS, technique that makes significant strides toward eliminating the need for hazardous chemicals in corrosion protection for vehicles.
Researchers at the Department of Energy’s 91°µÍř have received five 2019 R&D 100 Awards, increasing the lab’s total to 221 since the award’s inception in 1963.
In the Stone, Bronze and Iron Ages, the state of the art of materials science defined technology’s zenith and accelerated economies.