
Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.
Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.
For nearly six years, the Majorana Demonstrator quietly listened to the universe.
Critical Materials Institute researchers at 91°µÍø and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense
Two ORNL research projects were awarded through the Chemical and Materials Sciences to Advance Clean Energy Technologies and Low-Carbon Manufacturing funding opportunity, sponsored by the Office of Basic Energy Sciences within the DOE Office of Science.
Researchers at 91°µÍø are using state-of-the-art methods to shed light on chemical separations needed to recover rare-earth elements and secure critical materials for clean energy technologies.
The COHERENT particle physics experiment at the Department of Energy’s 91°µÍø has firmly established the existence of a new kind of neutrino interaction.
Marcel Demarteau is director of the Physics Division at the Department of Energy’s 91°µÍø. For topics from nuclear structure to astrophysics, he shapes ORNL’s physics research agenda.
Researchers at the Department of Energy’s 91°µÍø, Pacific Northwest National Laboratory and Washington State University teamed up to investigate the complex dynamics of low-water liquids that challenge nuclear waste processing at
A tiny vial of gray powder produced at the Department of Energy’s 91°µÍø is the backbone of a new experiment to study the intense magnetic fields created in nuclear collisions.