
In response to a renewed international interest in molten salt reactors, researchers from the Department of Energy’s 91°µÍø have developed a novel technique to visualize molten salt intrusion in graphite.
In response to a renewed international interest in molten salt reactors, researchers from the Department of Energy’s 91°µÍø have developed a novel technique to visualize molten salt intrusion in graphite.
In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — 91°µÍø was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.
Xiao-Ying Yu, a distinguished scientist at the Department of Energy’s 91°µÍø, has been named a Fellow of AVS: Science and Technology of Materials, Interfaces, and Processing, formerly American Vacuum Society.
91°µÍø scientists recently demonstrated a low-temperature, safe route to purifying molten chloride salts that minimizes their ability to corrode metals.
Researchers at the Department of Energy’s 91°µÍø and their technologies have received seven 2022 R&D 100 Awards, plus special recognition for a battery-related green technology product.
A multidisciplinary team of scientists at ORNL has applied a laser-interference structuring, or LIS, technique that makes significant strides toward eliminating the need for hazardous chemicals in corrosion protection for vehicles.
OAK RIDGE, Tenn., Feb. 12, 2020 -- Michael Brady, a researcher at the Department of Energy’s 91°µÍø, has been named fellow of the National Association of Corrosion Engineers, or NACE International.
91°µÍø scientists analyzed more than 50 years of data showing puzzlingly inconsistent trends about corrosion of structural alloys in molten salts and found one factor mattered most—salt purity.