
In response to a renewed international interest in molten salt reactors, researchers from the Department of Energyâs 91°”Íű have developed a novel technique to visualize molten salt intrusion in graphite.
In response to a renewed international interest in molten salt reactors, researchers from the Department of Energyâs 91°”Íű have developed a novel technique to visualize molten salt intrusion in graphite.
Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.
In 2023, the National School on X-ray and Neutron Scattering, or NXS, marked its 25th year during its annual program, held August 6â18 at the Department of Energyâs Oak Ridge and Argonne National Laboratories.
Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states.
Since its inception in 2010, the program bolsters national scientific discovery by supporting early career researchers in fields pertaining to the Office of Science.
Ho Nyung Lee, a condensed matter physicist at the Department of Energyâs 91°”Íű, has been elected a Fellow of the Materials Research Society.
ORNL has been selected to lead an Energy Frontier Research Center, or EFRC, focused on polymer electrolytes for next-generation energy storage devices such as fuel cells and solid-state electric vehicle batteries.
A team led by the ORNL has found a rare quantum material in which electrons move in coordinated ways, essentially âdancing.â
Scientists at ORNL and the University of Tennessee, Knoxville, have found a way to simultaneously increase the strength and ductility of an alloy by introducing tiny precipitates into its matrix and tuning their size and spacing.
Led by ORNL and the University of Tennessee, Knoxville, a study of a solar-energy material with a bright future revealed a way to slow phonons, the waves that transport heat.