91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 4 of 4 Results

91°µÍø scientists have developed an experiment for testing potential materials for use in interplanetary travel. The experiment exposes prototype materials to temperatures over 2,400 degrees Celsius with only 300 watts of input electrical power. Credit: Carlos Jones, 91°µÍø, U.S. Dept. of Energy

If humankind reaches Mars this century, an 91°µÍø-developed experiment testing advanced materials for spacecraft may play a key role. 

Snapshot of total temperature distribution at supersonic speed of mach 2.4. Total temperature allows the team to visualize the extent of the exhaust plumes as the temperature of the plumes is much greater than that of the surrounding atmosphere. Credit: NASA

The type of vehicle that will carry people to the Red Planet is shaping up to be “like a two-story house you’re trying to land on another planet. 

Galactic wind simulation

Using the Titan supercomputer at 91°µÍø, a team of astrophysicists created a set of galactic wind simulations of the highest resolution ever performed. The simulations will allow researchers to gather and interpret more accurate, detailed data that elucidates how galactic winds affect the formation and evolution of galaxies.

Nuclear—Deep space travel

By automating the production of neptunium oxide-aluminum pellets, 91°µÍø scientists have eliminated a key bottleneck when producing plutonium-238 used by NASA to fuel deep space exploration.