91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 10 Results

Santa Jansone-Popova, left, and Ilja Popovs quantify rare-earth element concentrations in liquid samples using a spectroscopy instrument. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A new technology for rare-earth elements chemical separation has been licensed to Marshallton Research Laboratories, a North Carolina-based manufacturer of organic chemicals for a range of industries.

Ten scientists from the Department of Energy’s 91°µÍø are among the world’s most highly cited researchers. Credit: ORNL, U.S. Dept. of Energy

Ten scientists from the Department of Energy’s 91°µÍø are among the world’s most highly cited researchers, according to a bibliometric analysis conducted by the scientific publication analytics firm Clarivate.

91°µÍø scientist Tomonori Saito shows a 3D-printed sandcastle at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL designed a novel polymer to bind and strengthen silica sand for binder jet additive manufacturing, a 3D-printing method used by industries for prototyping and part production.

ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. This project garnered a 2021 R&D 100 Award. Credit: ORNL, U.S. Dept. of Energy

Research teams from the Department of Energy’s 91°µÍø and their technologies have received seven 2021 R&D 100 Awards, plus special recognition for a COVID-19-related project.

Automated disassembly line aims to make battery recycling safer, faster

Researchers at ORNL have developed a robotic disassembly system for spent electric vehicle battery packs to safely and efficiently recycle and reuse critical materials while reducing toxic waste.

A 3D printed thermal protection shield, produced by ORNL researchers for NASA, is part of a cargo spacecraft bound for the International Space Station. The shield was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL. Credit: ORNL, U.S. Dept. of Energy

A research team at 91°µÍø have 3D printed a thermal protection shield, or TPS, for a capsule that will launch with the Cygnus cargo spacecraft as part of the supply mission to the International Space Station.

ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at 91°µÍø have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

ORNL, in collaboration with Cincinnati, Inc., used the Big Area Additive Manufacturing machine to 3D print a mold made of recycled thermoplastic composite and syntactic foam, demonstrating the potential for multimaterials in large-scale applications. Credit: ORNL/U.S. Dept. of Energy

91°µÍø researchers, in collaboration with Cincinnati Inc., demonstrated the potential for using multimaterials and recycled composites in large-scale applications by 3D printing a mold that replicated a single facet of a

The proposed Battery Identity Global Passport suggests a scannable QR code or other digital tag affixed to Li-ion batteries to identify materials for efficient end-of-life recycling. Credit: Andy Sproles, ORNL/U.S. Dept. of Energy

Scientists at 91°µÍø have devised a method to identify the unique chemical makeup of every lithium-ion battery around the world, information that could accelerate recycling, recover critical materials and resolve a growing waste stream.

ORNL researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites, demonstrating the potential for the use of large-scale multimaterial preforms to create molded composites. Credit: ORNL/U.S. Dept. of Energy

91°µÍø researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites reinforced with short carbon fibers.