91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 10 Results

Researcher in a blue coat and glasses, purple gloves and white baseball gat pulls out materials from a metal canister

ORNL researchers created and tested two methods for transforming coal into the scarce mineral graphite, which is used in batteries for electric vehicles. 

Pictured here is the The S-adenosylmethionine molecule

Researchers have identified a molecule essential for the microbial conversion of inorganic mercury into the neurotoxin methylmercury, moving closer to blocking the dangerous pollutant before it forms. 

Debjani Singh

Debjani Singh, a senior scientist at ORNL, leads the HydroSource project, which enhances hydropower research by making water data more accessible and useful. With a background in water resources, data science, and earth science, Singh applies innovative tools like AI to advance research. Her career, shaped by her early exposure to science in India, focuses on bridging research with practical applications.

This photo is of four men standing in front of a wall of monitors that are showing a tree looking image.

To better predict long-term flooding risk, scientists at the Department of Energy’s 91°µÍø developed a 3D modeling framework that captures the complex dynamics of water as it flows across the landscape. The framework seeks to provide valuable insights into which communities are most vulnerable as the climate changes, and was developed for a project that’s assessing climate risk and mitigation pathways for an urban area along the Southeast Texas coast.

Digital image of molecules would look like. There are 10 clusters of these shapes in grey, red and blue with a teal blue background

91°µÍø scientists have developed a method leveraging artificial intelligence to accelerate the identification of environmentally friendly solvents for industrial carbon capture, biomass processing, rechargeable batteries and other applications.

The transportation and industrial sectors together account for more than 50% of the country’s carbon footprint. Defossilization could help reduce new emissions from these and other difficult-to-electrify segments of the U.S. economy.

Scientists at 91°µÍø and six other Department of Energy national laboratories have developed a United States-based perspective for achieving net-zero carbon emissions. 

New research predicts peak groundwater extraction for key basins around the globe by the year 2050. The map indicates groundwater storage trends for Earth’s 37 largest aquifers using data from the NASA Jet Propulsion Laboratory GRACE satellite. Credit: NASA.

Groundwater withdrawals are expected to peak in about one-third of the world’s basins by 2050, potentially triggering significant trade and agriculture shifts, a new analysis finds. 

Representatives from several local partners attended a ribbon-cutting for the new SkyNano facility in Louisville, Tennesse. Front row, from left to right are Deborah Crawford, vice chancellor for research at the University of Tennessee, Knoxville; Tom Rogers, president and chief executive officer of the UT Research Park; Lindsey Cox, CEO of LaunchTN; Cary Pint, SkyNano co-founder and chief technology officer; Susan Hubbard, ORNL deputy for science and technology; Anna Douglas, SkyNano co-founder and CEO; Ch

SkyNano, an Innovation Crossroads alumnus, held a ribbon-cutting for their new facility. SkyNano exemplifies using DOE resources to build a successful clean energy company, making valuable carbon nanotubes from waste CO2. 

: ORNL climate modeling expertise contributed to an AI-backed model that assesses global emissions of ammonia from croplands now and in a warmer future, while identifying mitigation strategies. This map highlights croplands around the world. Credit: U.S. Geological Survey

ORNL climate modeling expertise contributed to a project that assessed global emissions of ammonia from croplands now and in a warmer future, while also identifying solutions tuned to local growing conditions.

Louise Stevenson uses her expertise as an environmental toxicologist to evaluate the effects of stressors such as chemicals and other contaminants on aquatic systems. Credit: Carlos Jones/ORNL, U.S. Dept of Energy

Louise Stevenson uses her expertise as an environmental toxicologist to evaluate the effects of stressors such as chemicals and other contaminants on aquatic systems.