Filter News
Area of Research
News Topics
- (-) Advanced Reactors (11)
- 3-D Printing/Advanced Manufacturing (4)
- Bioenergy (1)
- Biomedical (2)
- Computer Science (2)
- Coronavirus (1)
- Cybersecurity (1)
- Environment (1)
- Fusion (8)
- Isotopes (5)
- Materials Science (3)
- Molten Salt (4)
- Neutron Science (5)
- Nuclear Energy (36)
- Physics (2)
- Space Exploration (5)
ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.
1 - 10 of 11 Results

A developing method to gauge the occurrence of a nuclear reactor anomaly has the potential to save millions of dollars.

As CASL ends and transitions to VERA Users Group, ORNL looks at the history of the program and its impact on the nuclear industry.

The Department of Energy’s Office of Science has selected three 91°µÍø scientists for Early Career Research Program awards.

Scientists at the Department of Energy Manufacturing Demonstration Facility at ORNL have their eyes on the prize: the Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new approaches that will be up and running by 2023.

Researchers at the Department of Energy’s 91°µÍø are refining their design of a 3D-printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods

In the 1960s, 91°µÍø's four-year Molten Salt Reactor Experiment tested the viability of liquid fuel reactors for commercial power generation. Results from that historic experiment recently became the basis for the first-ever molten salt reactor benchmark.

A software package, 10 years in the making, that can predict the behavior of nuclear reactors’ cores with stunning accuracy has been licensed commercially for the first time.

As scientists study approaches to best sustain a fusion reactor, a team led by 91°µÍø investigated injecting shattered argon pellets into a super-hot plasma, when needed, to protect the reactor’s interior wall from high-energy runaway electrons.

Ask Tyler Gerczak to find a negative in working at the Department of Energy’s 91°µÍø, and his only complaint is the summer weather. It is not as forgiving as the summers in Pulaski, Wisconsin, his hometown.

For the first time, 91°µÍø has completed testing of nuclear fuels using MiniFuel, an irradiation vehicle that allows for rapid experimentation.