Filter News
Area of Research
- Advanced Manufacturing (1)
- Biology and Environment (21)
- Building Technologies (3)
- Computational Biology (1)
- Computational Engineering (3)
- Computer Science (15)
- Electricity and Smart Grid (1)
- Energy Science (61)
- Functional Materials for Energy (1)
- Fusion and Fission (3)
- Fusion Energy (2)
- Isotopes (1)
- Materials (24)
- Materials for Computing (7)
- Mathematics (1)
- National Security (20)
- Neutron Science (13)
- Nuclear Science and Technology (2)
- Quantum information Science (6)
- Supercomputing (113)
News Topics
- (-) Buildings (73)
- (-) Computer Science (222)
- (-) Quantum Computing (50)
- 3-D Printing/Advanced Manufacturing (141)
- Advanced Reactors (40)
- Artificial Intelligence (123)
- Big Data (77)
- Bioenergy (105)
- Biology (121)
- Biomedical (72)
- Biotechnology (33)
- Chemical Sciences (84)
- Clean Water (32)
- Composites (33)
- Coronavirus (48)
- Critical Materials (29)
- Cybersecurity (35)
- Education (5)
- Element Discovery (1)
- Emergency (4)
- Energy Storage (114)
- Environment (217)
- Exascale Computing (64)
- Fossil Energy (8)
- Frontier (62)
- Fusion (65)
- Grid (73)
- High-Performance Computing (128)
- Hydropower (12)
- Irradiation (3)
- Isotopes (62)
- ITER (9)
- Machine Learning (66)
- Materials (156)
- Materials Science (154)
- Mathematics (12)
- Mercury (12)
- Microelectronics (4)
- Microscopy (55)
- Molten Salt (10)
- Nanotechnology (62)
- National Security (85)
- Neutron Science (169)
- Nuclear Energy (121)
- Partnerships (65)
- Physics (68)
- Polymers (34)
- Quantum Science (85)
- Security (30)
- Simulation (64)
- Software (1)
- Space Exploration (26)
- Statistics (4)
- Summit (70)
- Transportation (102)
ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.
1 - 10 of 327 Results

ORNL researchers helped introduce college students to quantum computing for the first time during the 2025 Winter Classic Invitational, providing hands-on access to real quantum hardware and training future high-performance computing users through a unique challenge that bridged classical and quantum technologies.
Daniel Jacobson, distinguished research scientist in the Biosciences Division at ORNL, has been elected a Fellow of the American Institute for Medical and Biological Engineering, or AIMBE, for his achievements in computational biology.

Researchers at ORNL tested a quantum computing approach to an old challenge: solving canonical fluid dynamics problems. The study relied on support from the Quantum Computing User Program, part of ORNL’s Oak Ridge Leadership Computing Facility. The results highlight avenues for further study of quantum computing’s potential to aid scientific discovery.

Pablo Moriano, a research scientist at ORNL, was given a prestigious distinction from one of the world’s leading educational and scientific computing societies, the .

Working at nanoscale dimensions, billionths of a meter in size, a team of scientists led by ORNL revealed a new way to measure high-speed fluctuations in magnetic materials. Knowledge obtained by these new measurements could be used to advance technologies ranging from traditional computing to the emerging field of quantum computing.

A workshop led by scientists at ORNL sketched a road map toward a longtime goal: development of autonomous, or self-driving, next-generation research laboratories.

Quantum information scientists at ORNL successfully demonstrated a device that combines key quantum photonic capabilities on a single chip for the first time.

A recent study led by quantum researchers at ORNL proved popular among the science community interested in building a more reliable quantum network. The study, led by ORNL’s Hsuan-Hao Lu, details development of a novel quantum gate that operates between two photonic degrees of freedom — polarization and frequency.

Researchers at ORNL joined forces with EPB of Chattanooga and the University of Tennessee at Chattanooga to demonstrate the first transmission of an entangled quantum signal using multiple wavelength channels and automatic polarization stabilization over a commercial network with no downtime.

P&G is using simulations on the ORNL Summit supercomputer to study how surfactants in cleaners cause eye irritation. By modeling the corneal epithelium, P&G aims to develop safer, concentrated cleaning products that meet performance and safety standards while supporting sustainability goals.