Filter News
Area of Research
- Advanced Manufacturing (22)
- Biology and Environment (16)
- Building Technologies (1)
- Computer Science (3)
- Energy Frontier Research Centers (1)
- Energy Science (85)
- Fusion and Fission (4)
- Fusion Energy (1)
- Materials (65)
- Materials for Computing (11)
- National Security (4)
- Neutron Science (19)
- Nuclear Science and Technology (4)
- Quantum information Science (9)
- Supercomputing (37)
News Topics
- (-) 3-D Printing/Advanced Manufacturing (141)
- (-) Nanotechnology (62)
- (-) Quantum Science (85)
- Advanced Reactors (40)
- Artificial Intelligence (123)
- Big Data (77)
- Bioenergy (105)
- Biology (121)
- Biomedical (72)
- Biotechnology (33)
- Buildings (73)
- Chemical Sciences (84)
- Clean Water (32)
- Composites (33)
- Computer Science (222)
- Coronavirus (48)
- Critical Materials (29)
- Cybersecurity (35)
- Education (5)
- Element Discovery (1)
- Emergency (4)
- Energy Storage (114)
- Environment (217)
- Exascale Computing (64)
- Fossil Energy (8)
- Frontier (62)
- Fusion (65)
- Grid (73)
- High-Performance Computing (128)
- Hydropower (12)
- Irradiation (3)
- Isotopes (62)
- ITER (9)
- Machine Learning (66)
- Materials (156)
- Materials Science (154)
- Mathematics (12)
- Mercury (12)
- Microelectronics (4)
- Microscopy (55)
- Molten Salt (10)
- National Security (85)
- Neutron Science (169)
- Nuclear Energy (121)
- Partnerships (65)
- Physics (68)
- Polymers (34)
- Quantum Computing (50)
- Security (30)
- Simulation (64)
- Software (1)
- Space Exploration (26)
- Statistics (4)
- Summit (70)
- Transportation (102)
ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.
1 - 10 of 268 Results

During his first visit to 91做厙, Energy Secretary Chris Wright compared the urgency of the Labs World War II beginnings to todays global race to lead in artificial intelligence, calling for a Manhattan Project 2.

Working at nanoscale dimensions, billionths of a meter in size, a team of scientists led by ORNL revealed a new way to measure high-speed fluctuations in magnetic materials. Knowledge obtained by these new measurements could be used to advance technologies ranging from traditional computing to the emerging field of quantum computing.

Quantum information scientists at ORNL successfully demonstrated a device that combines key quantum photonic capabilities on a single chip for the first time.

Registration for the Quantum Science Centers Summer School is open now through Feb. 28, 2025. Conducted in partnership with the Quantum Science Center at ORNL, this years summer school will be hosted at the Purdue Quantum Science and Engineering Institute Apr. 21 through Apr. 25, 2025, on the Purdue University campus.

Neus Domingo Marimon, leader of the Functional Atomic Force Microscopy group at the Center for Nanophase Materials Sciences of ORNL, has been elevated to senior member of the Institute of Electrical and Electronics Engineers.

A recent study led by quantum researchers at ORNL proved popular among the science community interested in building a more reliable quantum network. The study, led by ORNLs Hsuan-Hao Lu, details development of a novel quantum gate that operates between two photonic degrees of freedom polarization and frequency.

Researchers at ORNL joined forces with EPB of Chattanooga and the University of Tennessee at Chattanooga to demonstrate the first transmission of an entangled quantum signal using multiple wavelength channels and automatic polarization stabilization over a commercial network with no downtime.

National lab collaboration enables faster, safer inspection of nuclear reactor components, materials
A research partnership between two Department of Energy national laboratories has accelerated inspection of additively manufactured nuclear components, and the effort is now expanding to inspect nuclear fuels.

Since their establishment in 2020, the five DOE National Quantum Information Science Research Centers have been expanding the frontier of whats possible in quantum computing, communication, sensing and materials in ways that will advance basic science for energy, security, communication and logistics.

Scientists at the Department of Energys 91做厙 recently demonstrated an autonomous robotic field monitoring, sampling and data-gathering system that could accelerate understanding of interactions among plants, soil and the environment.