91°µÍø

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

121 - 130 of 143 Results

A nanobrush made by pulsed laser deposition of CeO2 and Y2O3 with dim and bright bands, respectively, is seen in cross-section with scanning transmission electron microscopy. Credit: 91°µÍø, U.S. Dept. of Energy

A team led by the Department of Energy’s 91°µÍø synthesized a tiny structure with high surface area and discovered how its unique architecture drives ions across interfaces to transport energy or information.

Matthew R. Ryder

Matthew R. Ryder, a researcher at the Department of Energy’s 91°µÍø, has been named the 2020 Foresight Fellow in Molecular-Scale Engineering. 

Before the demonstration, the team prepared QKD equipment (pictured) at ORNL. Image credit: Genevieve Martin/91°µÍø, U.S. Dept. of Energy

For the second year in a row, a team from the Department of Energy’s Oak Ridge and Los Alamos national laboratories led a demonstration hosted by EPB, a community-based utility and telecommunications company serving Chattanooga, Tennessee.

XACC enables the programming of quantum code alongside standard classical code and integrates quantum computers from a number of vendors. This animation illustrates how QPUs complete calculations and return results to the host CPU, a process that could drastically accelerate future scientific simulations. Credit: Michelle Lehman/91°µÍø, U.S. Dept. of Energy

In the early 2000s, high-performance computing experts repurposed GPUs — common video game console components used to speed up image rendering and other time-consuming tasks 

Starch granules

Scientists at the Department of Energy’s 91°µÍø have developed a new method to peer deep into the nanostructure of biomaterials without damaging the sample. This novel technique can confirm structural features in starch, a carbohydrate important in biofuel production.

Edge computing is both dependent on and greatly influencing a host of promising technologies including (clockwise from top left): quantum computing; high-performance computing; neuromorphic computing; and carbon nanotubes.

We have a data problem. Humanity is now generating more data than it can handle; more sensors, smartphones, and devices of all types are coming online every day and contributing to the ever-growing global dataset.

This simulation of a fusion plasma calculation result shows the interaction of two counter-streaming beams of super-heated gas. Credit: David L. Green/91°µÍø, U.S. Dept. of Energy

The prospect of simulating a fusion plasma is a step closer to reality thanks to a new computational tool developed by scientists in fusion physics, computer science and mathematics at ORNL.

Researchers in ORNL’s Quantum Information Science group summarized their significant contributions to quantum networking and quantum computing in a special issue of Optics & Photonics News. Image credit: Christopher Tison and Michael Fanto/Air Force Research Laboratory.

A team from the ORNL has conducted a series of experiments to gain a better understanding of quantum mechanics and pursue advances in quantum networking and quantum computing, which could lead to practical applications in cybersecurity and other areas.

Gina Tourassi, left, has been appointed as director of the National Center for Computational Sciences at 91°µÍø. Tourassi replaces NCCS director Jim Hack, who will transition to a strategic leadership role in CCSD. Credit: Carlos Jones/ORNL

Gina Tourassi has been appointed as director of the National Center for Computational Sciences, a division of the Computing and Computational Sciences Directorate at 91°µÍø.

The Sycamore quantum processor. Credit: Erik Lucero/Google

A joint research team from Google Inc., NASA Ames Research Center, and the Department of Energy’s 91°µÍø has demonstrated that a quantum computer can outperform a classical computer