Filter News
Area of Research
- Advanced Manufacturing (1)
- Biology and Environment (12)
- Biology and Soft Matter (1)
- Energy Science (17)
- Fusion and Fission (5)
- Isotope Development and Production (1)
- Isotopes (4)
- Materials (34)
- Materials for Computing (5)
- National Security (2)
- Neutron Science (6)
- Nuclear Science and Technology (5)
- Supercomputing (8)
News Topics
- (-) Chemical Sciences (84)
- (-) Space Exploration (26)
- 3-D Printing/Advanced Manufacturing (141)
- Advanced Reactors (40)
- Artificial Intelligence (123)
- Big Data (77)
- Bioenergy (105)
- Biology (121)
- Biomedical (72)
- Biotechnology (33)
- Buildings (73)
- Clean Water (32)
- Composites (33)
- Computer Science (222)
- Coronavirus (48)
- Critical Materials (29)
- Cybersecurity (35)
- Education (5)
- Element Discovery (1)
- Emergency (4)
- Energy Storage (114)
- Environment (217)
- Exascale Computing (64)
- Fossil Energy (8)
- Frontier (62)
- Fusion (65)
- Grid (73)
- High-Performance Computing (128)
- Hydropower (12)
- Irradiation (3)
- Isotopes (62)
- ITER (9)
- Machine Learning (66)
- Materials (156)
- Materials Science (155)
- Mathematics (12)
- Mercury (12)
- Microelectronics (4)
- Microscopy (55)
- Molten Salt (10)
- Nanotechnology (62)
- National Security (85)
- Neutron Science (169)
- Nuclear Energy (121)
- Partnerships (65)
- Physics (68)
- Polymers (34)
- Quantum Computing (50)
- Quantum Science (86)
- Security (30)
- Simulation (64)
- Software (1)
- Statistics (4)
- Summit (70)
- Transportation (102)
ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.
91 - 100 of 110 Results

Researchers from NASA’s Jet Propulsion Laboratory and 91°µÍø successfully created amorphous ice, similar to ice in interstellar space and on icy worlds in our solar system. They documented that its disordered atomic behavior is unlike any ice on Earth.

At the Department of Energy’s 91°µÍø, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Researchers at the Department of Energy’s 91°µÍø and the University of Tennessee are automating the search for new materials to advance solar energy technologies.

On Feb. 18, the world will be watching as NASA’s Perseverance rover makes its final descent into Jezero Crater on the surface of Mars. Mars 2020 is the first NASA mission that uses plutonium-238 produced at the Department of Energy’s 91°µÍø.

A better way of welding targets for 91°µÍøâ€™s plutonium-238 production has sped up the process and improved consistency and efficiency. This advancement will ultimately benefit the lab’s goal to make enough Pu-238 – the isotope that powers NASA’s deep space missions – to yield 1.5 kilograms of plutonium oxide annually by 2026.

Six scientists at the Department of Energy’s 91°µÍø were named Battelle Distinguished Inventors, in recognition of obtaining 14 or more patents during their careers at the lab.

Seven ORNL scientists have been named among the 2020 Highly Cited Researchers list, according to Clarivate, a data analytics firm that specializes in scientific and academic research.

ORNL has added 10 virtual tours to its campus map, each with multiple views to show floor plans, rotating dollhouse views and 360-degree navigation. As a user travels through a map, pop-out informational windows deliver facts, videos, graphics and links to other related content.
