
Researchers utilized a roll-to-roll process to coat electrically conductive carbon fibers with semiconducting silicon carbide nanoparticles—demonstrating a scalable method to make reinforcing fibers for composite applications requiring strong
Researchers utilized a roll-to-roll process to coat electrically conductive carbon fibers with semiconducting silicon carbide nanoparticles—demonstrating a scalable method to make reinforcing fibers for composite applications requiring strong
Scientists have unraveled details of the mechanism of mechanical reinforcement in glassy polymer nanocomposites.1 Measurements in the interfacial layer ~2–4 nm around nanoparticles revealed that Young’s modulus, which defines the relationship between
Misfit heterojunctions formed by van der Waals (vdW) epitaxial growth of one crystalline metal chalcogenide monolayer on another was demonstrated for the first time to form p-n junctions that exhibit a photovoltaic response.
Spatial localization of distinct photoexcited species were identified in light harvesting perovskite based materials using ultrafast transient absorption microscopy (TAM).