
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
ORNL researchers developed a novel nonlinear level set learning method to reduce dimensionality in high-dimensional function approximation.
ORNL researchers developed a stochastic approximate gradient ascent method to reduce posterior uncertainty in Bayesian experimental design involving implicit models.
A team of ORNL researchers has used the DCA++ application, a popular code for predicting the performance of quantum materials, to verify two performance-enhancing strategies.
Kokkos is a programming model and library for writing performance-portable code in C++.