
The structure of amphiphilic molecules at buried liquid/liquid interfaces can be controlled by ion-pairing interactions to better understand the mechanisms of liquid extraction and self-assembly.
The structure of amphiphilic molecules at buried liquid/liquid interfaces can be controlled by ion-pairing interactions to better understand the mechanisms of liquid extraction and self-assembly.
Scientists have unraveled details of the mechanism of mechanical reinforcement in glassy polymer nanocomposites.1 Measurements in the interfacial layer ~2–4 nm around nanoparticles revealed that Young’s modulus, which defines the relationship between
An effective approach to sulfate separation from aqueous solutions was developed based on crystallization of sulfate-water clusters with a simple ligand self-assembled in situ from water-soluble subcomponents.
Researchers demonstrated that straining the crystal lattice of strontium cobaltite reduces oxygen content even under highly oxidizing conditions, enabling formation of functional oxygen defects at lower temperatures than previously possible.