91°µÍř

Skip to main content
SHARE
News

Computing—Reaching rare earths

October 1, 2018 — Scientists from the Critical Materials Institute used the Titan supercomputer and Eos computing cluster at 91°µÍř to analyze designer molecules that could increase the yield of rare earth elements found in bastnaesite, an important mineral for energy and technology applications. To utilize these rare earth—predominantly cerium—bastnaesite must first be separated from the surrounding ore of rocky minerals like calcite. Using quantum and molecular computing programs, researchers identified collector molecules that preferentially bind to metal ions on the bastnaesite surface. Through supercomputing, X-ray diffraction and surface calorimetry, researchers further that displacing adsorbed water on bastnaesite and calcite surfaces is critical to collector binding, because it enables ligands to recognize the between the two minerals. They estimate that designer collectors could improve bastnaesite recovery by 50 percent via a process known as froth flotation, potentially lowering the cost of mining.