91°µÍř

Skip to main content
Johannesburg, South Africa 2

Geospatial scientists at 91°µÍř analyzed three cities of varying infrastructures to look for patterns of electricity use and locate “dark spots” where informal neighborhoods may lack access to power.

Transportation Energy Data Book Edition 37

91°µÍř’s latest reports that the number of vehicles nationwide is growing faster than the population, with sales more than 17 million since 2015, and the average household vehicle travels more than 11,000 miles per year.

In this MXene electrode, choosing the appropriate solvent for the electrolyte can increase energy density significantly. This scanning electron microscopy image shows fine features of a film only 5 microns thick—approximately 10 times narrower than a human hair. Credit: Drexel University; image by Tyler Mathis
Scientists at ORNL, Drexel University and their partners have discovered a way to improve the energy density of promising energy-storage materials, conductive two-dimensional ceramics called MXenes.
(From left) ORNL Associate Laboratory Director for Computing and Computational Sciences Jeff Nichols; ORNL Health Data Sciences Institute Director Gina Tourassi; DOE Deputy Under Secretary for Science Thomas Cubbage; ORNL Task Lead for Biostatistics Blair Christian; and ORNL Research Scientist Ioana Danciu were invited to the White House to showcase an ORNL-developed digital tool aimed at better matching cancer patients with clinical trials.

OAK RIDGE, Tenn., March 4, 2019—A team of researchers from the Department of Energy’s 91°µÍř Health Data Sciences Institute have harnessed the power of artificial intelligence to better match cancer patients with clinical trials.

carbon nanospikes

OAK RIDGE, Tenn., March 1, 2019—ReactWell, LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s 91°µÍř to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and

To develop complex materials with superior properties, Vera Bocharova uses diverse methods including broadband dielectric spectroscopy. Credit: 91°µÍř, U.S. Dept. of Energy; photographer Jason Richards

Vera Bocharova at the Department of Energy’s 91°µÍř investigates the structure and dynamics of soft materials.

ORNL will use state-of-the-art R&D tools at the Battery Manufacturing Facility to develop new methods for separating and reclaiming valuable materials from spent EV batteries.

The use of lithium-ion batteries has surged in recent years, starting with electronics and expanding into many applications, including the growing electric and hybrid vehicle industry. But the technologies to optimize recycling of these batteries have not kept pace.

Yue Yuan standing with Flora Meilleur in a railed walkway at the Spallation Neutron Source.

Yue Yuan, a second-year PhD student at NC State University’s , is working to create textiles that filter carbon dioxide (CO2) by using the latest scientific techniques in synthesis and imaging. Known as biocatalytic textiles, these materials could serve as sustainable scrubbers for CO2 capture by using enzymes trapped in bio-based polymers to catalyze the hydration of CO2.