
Filter News
Area of Research
- (-) Fusion Energy (6)
- Advanced Manufacturing (6)
- Biological Systems (1)
- Biology and Environment (4)
- Building Technologies (1)
- Computational Engineering (1)
- Computer Science (8)
- Energy Science (60)
- Materials (55)
- National Security (5)
- Neutron Science (26)
- Nuclear Science and Technology (11)
- Quantum information Science (3)
- Supercomputing (31)
- Transportation Systems (1)
News Type
Media Contacts
Connect with ORNL
Get ORNL News

As scientists study approaches to best sustain a fusion reactor, a team led by 91°µÍø investigated injecting shattered argon pellets into a super-hot plasma, when needed, to protect the reactor’s interior wall from high-energy runaway electrons.

Kathy McCarthy has been named director of the US ITER Project Office at the Department of Energy’s 91°µÍø, effective March 2020.

The U.S. Department of Energy announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development.

In a recent study, researchers at 91°µÍø performed experiments in a prototype fusion reactor materials testing facility to develop a method that uses microwaves to raise the plasma’s temperature closer to the extreme values

Using additive manufacturing, scientists experimenting with tungsten at 91°µÍø hope to unlock new potential of the high-performance heat-transferring material used to protect components from the plasma inside a fusion reactor. Fusion requires hydrogen isotopes to reach millions of degrees.

Scientists have tested a novel heat-shielding graphite foam, originally created at 91°µÍø, at Germany’s Wendelstein 7-X stellarator with promising results for use in plasma-facing components of fusion reactors.