91°µÍø

Skip to main content
ORNL computing staff members Hector Suarez (middle) and William Castillo (right) talk HPC at the Tapia Conference career fair in San Diego, California. Credit: ORNL, U.S. Dept of Energy

The National Center for Computational Sciences, located at the Department of Energy’s 91°µÍø, made a strong showing at computing conferences this fall. Staff from across the center participated in numerous workshops and invited speaking engagements.

The 2024 Gordon Bell Prize goes to researchers led by the University of Melbourne for using the Frontier supercomputer to conduct a quantum molecular dynamics simulation 1,000 times greater in size and speed than any previous simulation of its kind. Credit: SC24

This year’s Association for Computing Machinery’s Gordon Bell Prize in supercomputing goes to researchers led by the University of Melbourne who used the Frontier supercomputer to conduct a quantum molecular dynamics simulation 1,000 times greater in size and speed than any previous simulation of its kind.

Scientists used neutron scattering to study how tweaking the ionic clusters in ionizable polymer solutions affects their structure. The polymer building blocks are marked in gold and the ionizable groups in red. Findings could open doors to lighter, more efficient clean energy devices. Credit: Phoenix Pleasant/ORNL, U.S. Dept. of Energy

Electrolytes that convert chemical to electrical energy underlie the search for new power sources with zero emissions. Among these new power sources are fuel cells that produce electricity. 

KAUST researchers are this year’s winners of the Gordon Bell Prize for Climate Modeling. Credit: SC24
The 2024 Gordon Bell Prize for Climate Modelling has been awarded to a team of researchers led by the King Abdullah University of Science and Technology, or KAUST, Saudi Arabia, who used the Frontier supercomputer to develop an exascale
A small sample from the Frontier simulations reveals the evolution of the expanding universe in a region containing a massive cluster of galaxies from billions of years ago to present day (left).

In early November, researchers at the Department of Energy’s Argonne National Laboratory used the fastest supercomputer on the planet to run the largest astrophysical simulation of the universe ever conducted. The achievement was made using the Frontier supercomputer at 91°µÍø. 

7 people from ORBIT research team accept their award from Tom Tabor (middle)

ORNL has been recognized in the 21st edition of the HPCwire Readers’ and Editors’ Choice Awards, presented at the 2024 International Conference for High Performance Computing, Networking, Storage and Analysis in Atlanta, Georgia.

Illustration of a hydrogen atom.

Scientists at ORNL used neutrons to end a decades-long debate about an enzyme cancer uses.

Hard drive being pulled and put in recycle container.

The Summit supercomputer, once the world’s most powerful, is set to be decommissioned by the end of 2024 to make way for the next-generation supercomputer. Over the summer, crews began dismantling Summit’s Alpine storage system, shredding over 40,000 hard drives with the help of ShredPro Secure, a local East Tennessee business. This partnership not only reduced costs and sped up the process but also established a more efficient and secure method for decommissioning large-scale computing systems in the future.

Robert Saethre has worked to create a LEGO model of the ring injection region of the SNS’ pulsed accelerator that features the new Proton Power Upgrade magnets and vacuum chambers.

Using LEGO® bricks, Robert Saethre has worked to create a model of the ring injection region of the SNS pulsed accelerator that features the new Proton Power Upgrade magnets and vacuum chambers. 

The Frontier supercomputer simulated magnetic responses inside calcium-48, depicted by red and blue spheres. Insights into the nucleus’s fundamental forces could shed light on supernova dynamics.

Nuclear physicists at the Department of Energy’s 91°µÍø recently used Frontier, the world’s most powerful supercomputer, to calculate the magnetic properties of calcium-48’s atomic nucleus.