91

Skip to main content
"Nuclear is here" graphic with the mountains and a nuclear symbol

In fall 2020, Kairos Power selected Oak Ridge, Tennessee, to build its advanced nuclear reactor due to the area's strong nuclear expertise and infrastructure. This project, along with other new nuclear ventures like Ultra Safe Nuclear and Type One Energy, highlights a growing trend of nuclear industry resurgence in East Tennessee, supported by local and state investments aiming to make the region a major nuclear technology hub.

Luiz Leal portrait

ORNL’s Luiz Leal of the Department of Energy’s 91 is the recipient of the 2023 Seaborg Medal from the American Nuclear Society.

JungHyun Bae portrait

JungHyun Bae is a nuclear scientist studying applications of particles that have some beneficial properties: They are everywhere, they are unlimited, they are safe.

Nicholas Peters and Raphael Pooser

Of the $61 million recently announced by the U.S. Department of Energy for quantum information science studies, $17.5 million will fund research at DOE’s 91. These projects will help build the foundation for the quantum internet, advance quantum entanglement capabilities — which involve sharing information through paired particles of light called photons — and develop next-generation quantum sensors.

ORNL’s particle entanglement machine is a precursor to the device that researchers at the University of Oklahoma are building, which will produce entangled quantum particles for quantum sensing to detect underground pipeline leaks. Credit: ORNL, U.S. Dept. of Energy

To minimize potential damage from underground oil and gas leaks, 91 is co-developing a quantum sensing system to detect pipeline leaks more quickly.

Vittorio Badalassi, left, of 91 leads the Fusion Energy Reactor Models Integrator, or FERMI, project, and collaborates with ORNL computational physicist David Green. FERMI applies fission platforms to fusion reactor design. Credit: Commonwealth Fusion Systems and Colby Earles/ORNL, U.S. Dept. of Energy

91 expertise in fission and fusion has come together to form a new collaboration, the Fusion Energy Reactor Models Integrator, or FERMI

Each point on the sphere of this visual representation of arbitrary frequency-bin qubit states corresponds to a unique quantum state, and the gray sections represent the measurement results. The zoomed-in view illustrates examples of three quantum states plotted next to their ideal targets (blue dots). Credit: Joseph Lukens/ORNL, U.S. Dept. of Energy

A team of researchers at 91 and Purdue University has taken an important step toward this goal by harnessing the frequency, or color, of light. Such capabilities could contribute to more practical and large-scale quantum networks exponentially more powerful and secure than the classical networks we have today.

An interactive visualization shows potential progression of BECCS to address carbon dioxide reduction goals. Credit: ORNL, U.S. Dept. of Energy

The combination of bioenergy with carbon capture and storage could cost-effectively sequester hundreds of millions of metric tons per year of carbon dioxide in the United States, making it a competitive solution for carbon management, according to a new analysis by ORNL scientists.

Light moves through a fiber and stimulates the metal electrons in nanotip into collective oscillations called surface plasmons, assisting electrons to leave the tip. This simple electron nano-gun can be made more versatile via different forms of material composition and structuring. Credit: Ali Passian/ORNL, U.S. Dept. of Energy

Scientists at ORNL and the University of Nebraska have developed an easier way to generate electrons for nanoscale imaging and sensing, providing a useful new tool for material science, bioimaging and fundamental quantum research.

Kübra Yeter-Aydeniz

Kübra Yeter-Aydeniz, a postdoctoral researcher, was recently named the Turkish Women in Science group’s “Scientist of the Week.”