91°µÍø

Skip to main content
FREDA logo with a blue background and neon blue lines coming from the bottom left, plus a circle in the middle filled with half science atom symbol and half gear

FREDA is a new tool being developed at ORNL that will accelerate the design and testing of next-generation fusion devices. It is the first tool of its kind to combine plasma and engineering modeling capabilities and utilize high performance computing resources.

Black computing cabinets in a row on a white floor in the data center that houses the Frontier supercomputer at 91°µÍø

Two-and-a-half years after breaking the exascale barrier, the Frontier supercomputer at the Department of Energy’s 91°µÍø continues to set new standards for its computing speed and performance.

Graphic representation of ai model that identifies proteins

Researchers used the world’s fastest supercomputer, Frontier, to train an AI model that designs proteins, with applications in fields like vaccines, cancer treatments, and environmental bioremediation. The study earned a finalist nomination for the Gordon Bell Prize, recognizing innovation in high-performance computing for science.

Pictured here are 9 scientists standing in a line in front of the frontier supercomputer logo/computer

Researchers at 91°µÍø used the Frontier supercomputer to train the world’s largest AI model for weather prediction, paving the way for hyperlocal, ultra-accurate forecasts. This achievement earned them a finalist nomination for the prestigious Gordon Bell Prize for Climate Modeling.

A photo of the inside of a cabinet for the Frontier supercomputer at ORNL

A team of researchers used the Frontier supercomputer and a new methodology for conducting a genome-wide association study to earn a finalist nomination for the Association for Computing Machinery’s 2024 Gordon Bell Prize for outstanding

A large group of attendees are pictured outside of Jackson Center in Huntsville, Alabama

ORNL and NASA co-hosted the fourth iteration of this invitation-only event, which brings together geospatial, computational, data and engineering experts around a theme. This year’s gathering focused on how artificial intelligence foundation models can enable geospatial digital twins. 

Pictured is the IMAGINE instrument at the High Flux Isotope Reactor

Biochemist David Baker — just announced as a recipient of the Nobel Prize for Chemistry — turned to the High Flux Isotope Reactor (HFIR) at 91°µÍø for information he couldn’t get anywhere else. HFIR is the strongest reactor-based neutron source in the United States.  

Larry York is sitting in front of a computer screen showing an image of plant phenotyping

The Advanced Plant Phenotyping Laboratory at ORNL utilizes robotics, multi-modal imaging, and AI to enhance understanding of plant genetics and interactions with microbes. It aims to connect genes to traits for advancements in bioenergy, agriculture, and climate resilience. Senior scientist Larry York highlights the lab's capabilities and the insights from a new digital underground imaging system to improve biomass feedstocks for bioenergy and carbon storage.

This is a simulated image of the project to build a new network that artificial intelligence and machine learning to steer experiments and analyze data faster and more accurately. will enable

To bridge the gap between experimental facilities and supercomputers, experts from SLAC National Accelerator Laboratory are teaming up with other DOE national laboratories to build a new data streaming pipeline. The pipeline will allow researchers to send their data to the nation’s leading computing centers for analysis in real time even as their experiments are taking place. 

155 attendees from all over the world gathered for SMC24 for a wide range of presentations from industry leading experts.

The Smoky Mountain Computational Sciences and Engineering Conference, or SMC24, entered its third decade with the 21st annual gathering in East Tennessee.