91°µÍø

Skip to main content
quantum network illustration

Researchers at ORNL joined forces with EPB of Chattanooga and the University of Tennessee at Chattanooga to demonstrate the first transmission of an entangled quantum signal using multiple wavelength channels and automatic polarization stabilization over a commercial network with no downtime.

Procter & Gamble scientists used ORNL’s Summit supercomputer to create a digital model of the corneal epithelium, the primary outer layer of cells covering the human eye, and test that model against a series of cleaning compounds in search of a gentler, more environmentally sustainable formula.

P&G is using simulations on the ORNL Summit supercomputer to study how surfactants in cleaners cause eye irritation. By modeling the corneal epithelium, P&G aims to develop safer, concentrated cleaning products that meet performance and safety standards while supporting sustainability goals.

Two pictures of a rounded triangle shape are shown in mirror image. The left is white with red and purple spots in the middle while the one on the right is purple with a yellow and blue ring in the middle

Scientists designing the world’s first controlled nuclear fusion power plant, ITER, needed to solve the problem of runaway electrons, negatively charged particles in the soup of matter in the plasma within the tokamak, the magnetic bottle intended to contain the massive energy produced. Simulations performed on Summit, the 200-petaflop supercomputer at ORNL, could offer the first step toward a solution.

Photo is a high aerial view of lake superior through the clouds

Researchers at Stanford University, the European Center for Medium-Range Weather Forecasts, or ECMWF, and ORNL used the lab’s Summit supercomputer to better understand atmospheric gravity waves, which influence significant weather patterns that are difficult to forecast. 

Summit Supercomputer

Scientists conducted a groundbreaking study on the genetic data of over half a million U.S. veterans, using tools from the 91°µÍø to analyze 2,068 traits from the Million Veteran Program.

Picture shows magnetic domains in uranium with a blue and orange organic shapes, similar to lava flowing through water, but in graphic form

The US focuses on nuclear nonproliferation, and ORNL plays a key role in this mission. The lab conducts advanced research in uranium science, materials analysis and nuclear forensics to detect illicit nuclear activities. Using cutting-edge tools and operational systems, ORNL supports global efforts to reduce nuclear threats by uncovering the history of nuclear materials and providing solutions for uranium removal. 

ORNL computing staff members Hector Suarez (middle) and William Castillo (right) talk HPC at the Tapia Conference career fair in San Diego, California. Credit: ORNL, U.S. Dept of Energy

The National Center for Computational Sciences, located at the Department of Energy’s 91°µÍø, made a strong showing at computing conferences this fall. Staff from across the center participated in numerous workshops and invited speaking engagements.

Three researchers are standing in the quantum computing lab at ORNL behind a big metal machine with multiple port hole looking windows attached.

Since their establishment in 2020, the five DOE National Quantum Information Science Research Centers have been expanding the frontier of what’s possible in quantum computing, communication, sensing and materials in ways that will advance basic science for energy, security, communication and logistics.

Three team members stand holding their award for bet paper by Welding Journal

A paper written by researchers from the Department of Energy’s 91°µÍø was selected as the top paper of 2023 by Welding Journal that explored the feasibility of using laser-blown powder direct energy deposition, or Laser-powder DED.

Scientists stands at podium in front of group; stage has green and blue lights

ORNL welcomed attendees to the inaugural Southeastern Quantum Conference, held Oct. 28 – 30 in downtown Knoxville, to discuss innovative ways to use quantum science and technologies to enable scientific discovery.