
Filter News
Area of Research
- Advanced Manufacturing (1)
- Biology and Environment (19)
- Building Technologies (1)
- Computational Biology (1)
- Computational Engineering (3)
- Computer Science (15)
- Energy Science (25)
- Fusion and Fission (2)
- Fusion Energy (2)
- Isotopes (1)
- Materials (17)
- Materials for Computing (7)
- Mathematics (1)
- National Security (19)
- Neutron Science (13)
- Nuclear Science and Technology (2)
- Quantum information Science (6)
- Supercomputing (96)
News Topics
- (-) Computer Science (222)
- 3-D Printing/Advanced Manufacturing (141)
- Advanced Reactors (40)
- Artificial Intelligence (123)
- Big Data (77)
- Bioenergy (105)
- Biology (121)
- Biomedical (72)
- Biotechnology (33)
- Buildings (73)
- Chemical Sciences (84)
- Clean Water (32)
- Composites (33)
- Coronavirus (48)
- Critical Materials (29)
- Cybersecurity (35)
- Education (5)
- Element Discovery (1)
- Emergency (4)
- Energy Storage (114)
- Environment (217)
- Exascale Computing (64)
- Fossil Energy (8)
- Frontier (62)
- Fusion (65)
- Grid (73)
- High-Performance Computing (128)
- Hydropower (12)
- Irradiation (3)
- Isotopes (62)
- ITER (9)
- Machine Learning (66)
- Materials (156)
- Materials Science (155)
- Mathematics (12)
- Mercury (12)
- Microelectronics (4)
- Microscopy (55)
- Molten Salt (10)
- Nanotechnology (62)
- National Security (85)
- Neutron Science (169)
- Nuclear Energy (121)
- Partnerships (65)
- Physics (68)
- Polymers (34)
- Quantum Computing (50)
- Quantum Science (86)
- Security (30)
- Simulation (64)
- Software (1)
- Space Exploration (26)
- Statistics (4)
- Summit (70)
- Transportation (102)
Media Contacts
Connect with ORNL
Get ORNL News

Ionic conduction involves the movement of ions from one location to another inside a material. The ions travel through point defects, which are irregularities in the otherwise consistent arrangement of atoms known as the crystal lattice. This sometimes sluggish process can limit the performance and efficiency of fuel cells, batteries, and other energy storage technologies.

91°µÍř is using artificial intelligence to analyze data from published medical studies associated with bullying to reveal the potential of broader impacts, such as mental illness or disease.

Scientists at 91°µÍř have developed a low-cost, printed, flexible sensor that can wrap around power cables to precisely monitor electrical loads from household appliances to support grid operations.

Scientists at the Department of Energy’s 91°µÍř are working to understand both the complex nature of uranium and the various oxide forms it can take during processing steps that might occur throughout the nuclear fuel cycle.

Using artificial neural networks designed to emulate the inner workings of the human brain, deep-learning algorithms deftly peruse and analyze large quantities of data. Applying this technique to science problems can help unearth historically elusive solutions.

The unique process of accepting a new supercomputer is one of the most challenging projects a programmer may take on during a career. When the Oak Ridge Leadership Computing Facility’s (OLCF’s) Verónica Melesse Vergara came to the United States from Ecuador in 2005, she never would have dreamed of being part of such an endeavor. But just last fall, she was.

OAK RIDGE, Tenn., March 4, 2019—A team of researchers from the Department of Energy’s 91°µÍř Health Data Sciences Institute have harnessed the power of artificial intelligence to better match cancer patients with clinical trials.

91°µÍř scientists have created open source software that scales up analysis of motor designs to run on the fastest computers available, including those accessible to outside users at the Oak Ridge Leadership Computing Facility.

A team of scientists led by 91°µÍř used machine learning methods to generate a high-resolution map of vegetation growing in the remote reaches of the Alaskan tundra.

Scientists at 91°µÍř and Hypres, a digital superconductor company, have tested a novel cryogenic, or low-temperature, memory cell circuit design that may boost memory storage while using less energy in future exascale and quantum computing applications.