
Filter News
Area of Research
- Advanced Manufacturing (1)
- Biology and Environment (3)
- Energy Science (7)
- Fusion and Fission (7)
- Fusion Energy (7)
- Materials (33)
- National Security (2)
- Neutron Science (10)
- Nuclear Science and Technology (13)
- Nuclear Systems Modeling, Simulation and Validation (1)
- Quantum information Science (1)
- Supercomputing (9)
News Topics
- (-) Advanced Reactors (40)
- (-) Physics (68)
- 3-D Printing/Advanced Manufacturing (141)
- Artificial Intelligence (123)
- Big Data (77)
- Bioenergy (105)
- Biology (121)
- Biomedical (72)
- Biotechnology (33)
- Buildings (73)
- Chemical Sciences (84)
- Clean Water (32)
- Composites (33)
- Computer Science (222)
- Coronavirus (48)
- Critical Materials (29)
- Cybersecurity (35)
- Education (5)
- Element Discovery (1)
- Emergency (4)
- Energy Storage (114)
- Environment (217)
- Exascale Computing (64)
- Fossil Energy (8)
- Frontier (62)
- Fusion (65)
- Grid (73)
- High-Performance Computing (128)
- Hydropower (12)
- Irradiation (3)
- Isotopes (62)
- ITER (9)
- Machine Learning (66)
- Materials (156)
- Materials Science (155)
- Mathematics (12)
- Mercury (12)
- Microelectronics (4)
- Microscopy (55)
- Molten Salt (10)
- Nanotechnology (62)
- National Security (85)
- Neutron Science (169)
- Nuclear Energy (121)
- Partnerships (65)
- Polymers (34)
- Quantum Computing (50)
- Quantum Science (86)
- Security (30)
- Simulation (64)
- Software (1)
- Space Exploration (26)
- Statistics (4)
- Summit (70)
- Transportation (102)
Media Contacts
Connect with ORNL
Get ORNL News

Combining expertise in physics, applied math and computing, 91°µÍř scientists are expanding the possibilities for simulating electromagnetic fields that underpin phenomena in materials design and telecommunications.

In the search to create materials that can withstand extreme radiation, Yanwen Zhang, a researcher at the Department of Energy’s 91°µÍř, says that materials scientists must think outside the box.

The Department of Energy’s Office of Science has selected three 91°µÍř scientists for Early Career Research Program awards.

ITER, the world’s largest international scientific collaboration, is beginning assembly of the fusion reactor tokamak that will include 12 different essential hardware systems provided by US ITER, which is managed by 91°µÍř.

Scientists at the Department of Energy Manufacturing Demonstration Facility at ORNL have their eyes on the prize: the Transformational Challenge Reactor, or TCR, a microreactor built using 3D printing and other new approaches that will be up and running by 2023.

Researchers at the Department of Energy’s 91°µÍř are refining their design of a 3D-printed nuclear reactor core, scaling up the additive manufacturing process necessary to build it, and developing methods

In the 1960s, 91°µÍř's four-year Molten Salt Reactor Experiment tested the viability of liquid fuel reactors for commercial power generation. Results from that historic experiment recently became the basis for the first-ever molten salt reactor benchmark.

In the Physics Division of the Department of Energy’s 91°µÍř, James (“Mitch”) Allmond conducts experiments and uses theoretical models to advance our understanding of the structure of atomic nuclei, which are made of various combinations of protons and neutrons (nucleons).

As a teenager, Kat Royston had a lot of questions. Then an advanced-placement class in physics convinced her all the answers were out there.

A software package, 10 years in the making, that can predict the behavior of nuclear reactors’ cores with stunning accuracy has been licensed commercially for the first time.