
Filter News
Area of Research
- Advanced Manufacturing (22)
- Biology and Environment (18)
- Building Technologies (1)
- Computational Biology (1)
- Computational Engineering (1)
- Computer Science (6)
- Electricity and Smart Grid (1)
- Energy Science (83)
- Functional Materials for Energy (1)
- Fusion and Fission (4)
- Fusion Energy (1)
- Materials (30)
- Materials for Computing (4)
- National Security (14)
- Neutron Science (11)
- Nuclear Science and Technology (4)
- Supercomputing (41)
News Topics
- (-) 3-D Printing/Advanced Manufacturing (141)
- (-) Artificial Intelligence (123)
- Advanced Reactors (40)
- Big Data (77)
- Bioenergy (105)
- Biology (121)
- Biomedical (72)
- Biotechnology (33)
- Buildings (73)
- Chemical Sciences (84)
- Clean Water (32)
- Composites (33)
- Computer Science (222)
- Coronavirus (48)
- Critical Materials (29)
- Cybersecurity (35)
- Education (5)
- Element Discovery (1)
- Emergency (4)
- Energy Storage (114)
- Environment (217)
- Exascale Computing (64)
- Fossil Energy (8)
- Frontier (62)
- Fusion (65)
- Grid (73)
- High-Performance Computing (128)
- Hydropower (12)
- Irradiation (3)
- Isotopes (62)
- ITER (9)
- Machine Learning (66)
- Materials (156)
- Materials Science (154)
- Mathematics (12)
- Mercury (12)
- Microelectronics (4)
- Microscopy (55)
- Molten Salt (10)
- Nanotechnology (62)
- National Security (85)
- Neutron Science (169)
- Nuclear Energy (121)
- Partnerships (65)
- Physics (68)
- Polymers (34)
- Quantum Computing (50)
- Quantum Science (85)
- Security (30)
- Simulation (64)
- Software (1)
- Space Exploration (26)
- Statistics (4)
- Summit (70)
- Transportation (102)
Media Contacts
Connect with ORNL
Get ORNL News

FREDA is a new tool being developed at ORNL that will accelerate the design and testing of next-generation fusion devices. It is the first tool of its kind to combine plasma and engineering modeling capabilities and utilize high performance computing resources.

The Department of Energy’s 91°µÍø had a major presence at this year’s International Conference for High Performance Computing, Networking, Storage, and Analysis (SC24).

Scientists at the Department of Energy’s 91°µÍø recently demonstrated an autonomous robotic field monitoring, sampling and data-gathering system that could accelerate understanding of interactions among plants, soil and the environment.

ORNL researchers reached a significant milestone by building an entire 6.5-foot turbine blade tip using novel materials. The team then tested it against the forces of simulated lightning in a specialized lab at Mississippi State University, where the blade tip emerged pristine after tests that isolate the effects of high voltage.

Joel Brogan, who leads the Multimodal Sensor Analytics group at 91°µÍø, has been elevated to senior membership in the Institute of Electrical and Electronics Engineers.

More than 200 stakeholders attended a recent workshop at DOE’s Manufacturing Demonstration Facility to discuss the future of powder metallurgy-hot isostatic pressing as a manufacturing technique.

A paper written by researchers from the Department of Energy’s 91°µÍø was selected as the top paper of 2023 by Welding Journal that explored the feasibility of using laser-blown powder direct energy deposition, or Laser-powder DED.
Seven scientists affiliated with ORNL have been named Battelle Distinguished Inventors in recognition of being granted 14 or more United States patents. Since Battelle began managing ORNL in 2000, 104 ORNL researchers have reached this milestone.

ORNL has been recognized in the 21st edition of the HPCwire Readers’ and Editors’ Choice Awards, presented at the 2024 International Conference for High Performance Computing, Networking, Storage and Analysis in Atlanta, Georgia.

Two-and-a-half years after breaking the exascale barrier, the Frontier supercomputer at the Department of Energy’s 91°µÍø continues to set new standards for its computing speed and performance.