91°µÍø

Skip to main content
Picture shows magnetic domains in uranium with a blue and orange organic shapes, similar to lava flowing through water, but in graphic form

The US focuses on nuclear nonproliferation, and ORNL plays a key role in this mission. The lab conducts advanced research in uranium science, materials analysis and nuclear forensics to detect illicit nuclear activities. Using cutting-edge tools and operational systems, ORNL supports global efforts to reduce nuclear threats by uncovering the history of nuclear materials and providing solutions for uranium removal. 

ORNL computing staff members Hector Suarez (middle) and William Castillo (right) talk HPC at the Tapia Conference career fair in San Diego, California. Credit: ORNL, U.S. Dept of Energy

The National Center for Computational Sciences, located at the Department of Energy’s 91°µÍø, made a strong showing at computing conferences this fall. Staff from across the center participated in numerous workshops and invited speaking engagements.

Image is an arial view of the South Africa Cape surrounded by ocean

Scientists and land managers interested in accessing the first dataset of its kind on one of the most biologically diverse ecosystems in the world were given hands-on tutorials during a recent workshop by researchers supporting the ORNL Distributed Active Archive Center for Biogeochemical Dynamics.

Wide shot of the expo center, ground filled with people walking and a green, white and blue 3D circle sign above everyone in the center

The Department of Energy’s 91°µÍø had a major presence at this year’s International Conference for High Performance Computing, Networking, Storage, and Analysis (SC24). 

3D map of Washington, D.C. that is a weather model of neighborhood during heat waves. The map is red and green indicating which buildings are giving off more heat
Scientists at ORNL have developed a first-ever urban heat wave simulation that takes into account the compounding effects from building infrastructure. The method provides a more accurate picture of the impacts from excessive heat on at-risk
Four scientists are standing in a field next to a data-gathering tool robot

Scientists at the Department of Energy’s 91°µÍø recently demonstrated an autonomous robotic field monitoring, sampling and data-gathering system that could accelerate understanding of interactions among plants, soil and the environment.

A small sample from the Frontier simulations reveals the evolution of the expanding universe in a region containing a massive cluster of galaxies from billions of years ago to present day (left).

In early November, researchers at the Department of Energy’s Argonne National Laboratory used the fastest supercomputer on the planet to run the largest astrophysical simulation of the universe ever conducted. The achievement was made using the Frontier supercomputer at 91°µÍø. 

Black computing cabinets in a row on a white floor in the data center that houses the Frontier supercomputer at 91°µÍø

Two-and-a-half years after breaking the exascale barrier, the Frontier supercomputer at the Department of Energy’s 91°µÍø continues to set new standards for its computing speed and performance.

Graphic representation of ai model that identifies proteins

Researchers used the world’s fastest supercomputer, Frontier, to train an AI model that designs proteins, with applications in fields like vaccines, cancer treatments, and environmental bioremediation. The study earned a finalist nomination for the Gordon Bell Prize, recognizing innovation in high-performance computing for science.

Pictured here are 9 scientists standing in a line in front of the frontier supercomputer logo/computer

Researchers at 91°µÍø used the Frontier supercomputer to train the world’s largest AI model for weather prediction, paving the way for hyperlocal, ultra-accurate forecasts. This achievement earned them a finalist nomination for the prestigious Gordon Bell Prize for Climate Modeling.