91°µĶų

Skip to main content
Research scientist Daniel Jacobson is standing with his arms crossed with a dark black backdrop

Daniel Jacobson, distinguished research scientist in the Biosciences Division at ORNL, has been elected a Fellow of the American Institute for Medical and Biological Engineering, or AIMBE, for his achievements in computational biology. 

A dark amber photo of a leaf with close up photos layered over top shown in lime green

Scientists at ORNL have developed a first-ever method of detecting ribonucleic acid, or RNA, inside plant cells using a technique that results in a visible fluorescent signal. The technology can help researchers detect and track changes in RNA and gene expression in real time, providing a powerful tool for the development of hardier bioenergy and food crops and for detection of unwanted plant modifications, pathogens and pests.  

Researcher is sitting in bio lab surrounded with plants

Dave Weston studies how microorganisms influence plant health and stress tolerance, using the Advanced Plant Phenotyping Laboratory to accelerate research on plant-microbe interactions and develop resilient crops for advanced fuels, chemicals and materials.

A deep look inside a cell membrane showing the production of materials from plant biomass, shown with shapes that consist of four green balls connected with a red ball on one end, dotted with smaller white balls on each surface.

Scientists at ORNL and the University of Cincinnati achieved a breakthrough in understanding the vulnerability of microbes to the butanol they produce during fermentation of plant biomass. The discovery could pave the way for more efficient production of domestic fuels, chemicals and materials.

Energy Secretary, CEO for OpenAI and ORNL researcher are standing over a table talking to event participants

ORNL took part in the ā€œ1,000 Scientists AI Jam Session,ā€ a first-of-its-kind virtual event that brought together leading scientists from nine national laboratories to test generative artificial intelligence models for their functionality in scientific research.

Secretary Wright leans over red computer door, signing with silver sharpie as ORNL Director Stephen Streiffer looks on

During his first visit to 91°µĶų, Energy Secretary Chris Wright compared the urgency of the Labā€™s World War II beginnings to todayā€™s global race to lead in artificial intelligence, calling for a ā€œManhattan Project 2.ā€

Six images fanned out across the right side of the page with the first page showcasing the report cover. To the right hand side is a green oak leaf.

A workshop led by scientists at ORNL sketched a road map toward a longtime goal: development of autonomous, or self-driving, next-generation research laboratories. 

Large group of over 30 students gather in conference room for a presentation, seated with their laptops

Not only did ORNL take home top honors at the 2024 International Conference for High Performance Computing, Networking, Storage, and Analysis (SC24), but the labā€™s computing staff also shared career advice and expertise with students eager to enter the world of supercomputing.

Hugh O'Neil, director or ORNL's Center for Structural Molecular Biology is sitting in the lab on a stool, hand on desk with glasses on. There are lab related items blurred in the foreground.

Hugh Oā€™Neillā€™s lifelong fascination with the complexities of the natural world drives his research at ORNL, where heā€™s using powerful neutron beams to dive deep into the microscopic realm of biological materials and unlock secrets for better production of domestic biofuels and bioproducts.

Stock image of a person in a doctor's coat pointing to white graphics if a person, world and dots, symbolizing the artificial intelligence technology used for cancer pathology
In a major milestone for cancer research, the Department of Energyā€™s 91°µĶų helped reduce the time between cancer diagnosis and pathology report processing from 22 months to just 14 months, utilizing advanced artificial