91°µÍø

Skip to main content
Emma Betters Thumbnail

Growing up in Florida, Emma Betters was fascinated by rockets and for good reason. Any time she wanted to see a space shuttle launch from NASA’s nearby Kennedy Space Center, all she had to do was sit on her front porch.

ORNL Technical Assistance Program

Experts at the Department of Energy’s 91°µÍø are now offering short-term technical and scientific assistance to entities working to combat the coronavirus through the COVID-19 Technical Assistance Program, an initiative of DOE’s Office of Technology Transitions.

Hector J. Santos-Villalobos, left, and Oscar A. Martinez

Two staff members at the Department of Energy’s 91°µÍø have received prestigious HENAAC and Luminary Awards from Great Minds in STEM, a nonprofit organization that focuses on promoting STEM careers in underserved 

Andrew Harter, pictured, and fellow ORNL staff members formed Horizon31 to build a set of products and services that provide customized unmanned vehicle control systems. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Horizon31, LLC has exclusively licensed a novel communication system that allows users to reliably operate unmanned vehicles such as drones from anywhere in the world using only an internet connection.

Cars and coronavirus

91°µÍø researchers have developed a machine learning model that could help predict the impact pandemics such as COVID-19 have on fuel demand in the United States.

Joe Hagerman is expanding connected neighborhood research at ORNL and envisions buildings of the future as resources capable of managing the flow and exchange of energy based on economic and market signals – a concept known as transactive energy. Credit: Carlos Jones/91°µÍø, U.S. Department of Energy

Joe Hagerman, ORNL research lead for buildings integration and controls, understands the impact building technology innovations can have during times of crisis. Over a decade ago, he found himself in the middle of one of the most devastating natural disasters of the century, Hurricane Katrina.

Analyses of lung fluid cells from COVID-19 patients conducted on the nation’s fastest supercomputer point to gene expression patterns that may explain the runaway symptoms produced by the body’s response to SARS-CoV-2. Credit: Jason B. Smith/ORNL, U.S. Dept. of Energy

A team led by Dan Jacobson of 91°µÍø used the Summit supercomputer at ORNL to analyze genes from cells in the lung fluid of nine COVID-19 patients compared with 40 control patients.

The CrossVis application includes a parallel coordinates plot (left), a tiled image view (right) and other interactive data views. Credit: Chad Steed/91°µÍø, U.S. Dept. of Energy

From materials science and earth system modeling to quantum information science and cybersecurity, experts in many fields run simulations and conduct experiments to collect the abundance of data necessary for scientific progress.

Computational biophysicist Ada Sedova is using experiments and high-performance computing to explore the properties of biological systems and predict their form and function, including research to accelerate drug discovery for COVID-19. Photo credit: Jason Richards, 91°µÍø, U.S. Dept. of Energy.

Ada Sedova’s journey to 91°µÍø has taken her on the path from pre-med studies in college to an accelerated graduate career in mathematics and biophysics and now to the intersection of computational science and biology

The protease protein is both shaped like a heart and functions as one, allowing the virus replicate and spread. Inhibiting the protease would block virus reproduction. Credit: Andrey Kovalevsky/ORNL, U.S. Dept. of Energy

A team of researchers has performed the first room-temperature X-ray measurements on the SARS-CoV-2 main protease — the enzyme that enables the virus to reproduce.