91°”Íű

Skip to main content
Troy Carter is standing on the staircase with a mural in the background showing the summit supercmputer

Troy Carter, director of the Fusion Energy Division at 91°”Íű, leads efforts to make fusion energy a reality, overseeing key projects like MPEX and fostering public-private collaborations in fusion research. 

Two men are talking on the backside of a semi trailer holding big wooden boxes

US ITER has completed delivery of all components for the support structure of the central solenoid, the 60-foot-tall superconducting magnet that is the “heart” of the ITER fusion machine. 

Secretary Wright leans over red computer door, signing with silver sharpie as ORNL Director Stephen Streiffer looks on

During his first visit to 91°”Íű, Energy Secretary Chris Wright compared the urgency of the Lab’s World War II beginnings to today’s global race to lead in artificial intelligence, calling for a “Manhattan Project 2.”

Three egg-shaped orbs of varying opacity are shown on a dark blue background, increasing transparency revealing they are filled with smaller round balls of red and blue. Arrows indicate counterclockwise rotation of the orbs, and green squiggles imply motion of the smaller balls.

Using the Frontier supercomputer at ORNL, researchers have developed a new technique that predicts nuclear properties in record detail. The study revealed how the structure of a nucleus relates to the force that holds it together. This understanding could advance efforts in quantum physics and across a variety of sectors, from to energy production to national security.

Computer rendering of the FRIB Decay Station initiator, featuring cylindrical components, vacuum chambers, and a greenish glow, used to measure the decays of exotic isotopes at FRIB.

Scientists at ORNL are using advanced germanium detectors to explore fundamental questions in nuclear physics, such as the nature of neutrinos and the matter-antimatter imbalance. The ongoing LEGEND project, an international collaboration, aims to discover neutrinoless double beta decay, which could significantly advance the understanding of the universe.

Two pictures of a rounded triangle shape are shown in mirror image. The left is white with red and purple spots in the middle while the one on the right is purple with a yellow and blue ring in the middle

Scientists designing the world’s first controlled nuclear fusion power plant, ITER, needed to solve the problem of runaway electrons, negatively charged particles in the soup of matter in the plasma within the tokamak, the magnetic bottle intended to contain the massive energy produced. Simulations performed on Summit, the 200-petaflop supercomputer at ORNL, could offer the first step toward a solution.

FREDA logo with a blue background and neon blue lines coming from the bottom left, plus a circle in the middle filled with half science atom symbol and half gear

FREDA is a new tool being developed at ORNL that will accelerate the design and testing of next-generation fusion devices. It is the first tool of its kind to combine plasma and engineering modeling capabilities and utilize high performance computing resources.

Kathryn McCarthy, director of the US ITER Project is pictured here posing against a black background.

Kathryn McCarthy, director of the US ITER Project at the Department of Energy’s 91°”Íű, has been awarded the 2024 E. Gail de Planque Medal by the American Nuclear Society.

The left/right columns show a time series of the neutron/proton number densities in log scale for a typical fission trajectory. The bar relates the color to the decimal logarithm of the number density.

Researchers used the Summit supercomputer at ORNL to answer one of fission’s big questions: What exactly happens during the nucleus’s “neck rupture” as it splits in two? Scission neutrons have been theorized to be among those particles emitted during neck rupture, although their exact characteristics have been debated due to a lack of conclusive experimental evidence of their existence.

Image of Giuseppe Barca looking at two computer monitors, representing the team using Frontier to perform the first quantum chemistry calculations to exceed an exaflop.

Researchers led by the University of Melbourne, Australia, have been nominated for the Association for Computing Machinery’s 2024 Gordon Bell Prize in supercomputing for conducting a quantum molecular dynamics simulation 1,000 times greater in size and speed than any previous simulation of its kind.