91°µÍø

Skip to main content
The Frontier supercomputer simulated magnetic responses inside calcium-48, depicted by red and blue spheres. Insights into the nucleus’s fundamental forces could shed light on supernova dynamics.

Nuclear physicists at the Department of Energy’s 91°µÍø recently used Frontier, the world’s most powerful supercomputer, to calculate the magnetic properties of calcium-48’s atomic nucleus. 

A portrait of John Sanseverino.

John joined the MPEX project in 2019 and has served as project manager for several organizations within ORNL.

A portrait of Larry Baylor

The award was given in “recognition of his lifelong leadership in fusion technology for plasma fueling systems in magnetically confined fusion systems.â€

This is an image of a man sitting at a computer with three screens.

Researchers conduct largest, most accurate molecular dynamics simulations to date of two million correlated electrons using Frontier, the world’s fastest supercomputer. The simulation, which exceed an exaflop using full double precision, is 1,000 times greater in size and speed than any quantum chemistry simulation of it's kind.

Man in blue button down shirt poses outside for a picture with his arms crossed.

91°µÍø has named Troy A. Carter director of the Fusion Energy Division in ORNL’s Fusion and Fission Energy and Science Directorate, or FFESD. 

Arial view of the Atchafalaya Basin

In the wet, muddy places where America’s rivers and lands meet the sea, scientists from the Department of Energy’s 91°µÍø are unearthing clues to better understand how these vital landscapes are evolving under climate change.

A macaroni shaped material in colorful rings, purple, red, blue, red, orange and then black.

A new study conducted on the Frontier supercomputer gave researchers new clues to improving fusion confinement. This research, in collaboration with General Atomics and UC San Diego, uncovered that the interaction between ions and electrons near the tokamak's edge can unexpectedly increase turbulence, challenging previous assumptions about how to optimize plasma confinement for efficient nuclear fusion.

Colorful circles with symbols of Vc, Vh and Vt inside. Blue, Orange and Pink

Researchers used quantum simulations to obtain new insights into the nature of neutrinos — the mysterious subatomic particles that abound throughout the universe — and their role in the deaths of massive stars.

Four thermometers are pictured across the top of the image with an image of a city in the bottom left, with a color block version of that city in the bottom right.

Researchers at 91°µÍø have developed free data sets to estimate how much energy any building in the contiguous U.S. will use in 2100. These data sets provide planners a way to anticipate future energy needs as the climate changes.

ORNL researchers have teamed up with other national labs to develop a free platform called Open Energy Data Initiative Solar Systems Integration Data and Modeling to better analyze the behavior of electric grids incorporating many solar projects. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have teamed up with other national labs to develop a free platform called Open Energy Data Initiative Solar Systems Integration Data and Modeling to better analyze the behavior of electric grids incorporating many solar projects.