91°µÍø

Skip to main content
A deep look inside a cell membrane showing the production of materials from plant biomass, shown with shapes that consist of four green balls connected with a red ball on one end, dotted with smaller white balls on each surface.

Scientists at ORNL and the University of Cincinnati achieved a breakthrough in understanding the vulnerability of microbes to the butanol they produce during fermentation of plant biomass. The discovery could pave the way for more efficient production of domestic fuels, chemicals and materials.

Animated graphic with a plant on the right, blue sphere on the left and blue glowing dots scattered throughout.

To help reduce the likelihood of losing future cultivated crops to drought and other seasonal hardships, researchers from ORNL, Budapest and Hungary are using neutrons, light microscopy and transmission electron microscopy to study the 'Never Never' plant, known for its ability to endure periods of little to no rain. 

Secretary Wright leans over red computer door, signing with silver sharpie as ORNL Director Stephen Streiffer looks on

During his first visit to 91°µÍø, Energy Secretary Chris Wright compared the urgency of the Lab’s World War II beginnings to today’s global race to lead in artificial intelligence, calling for a “Manhattan Project 2.â€

Six images fanned out across the right side of the page with the first page showcasing the report cover. To the right hand side is a green oak leaf.

A workshop led by scientists at ORNL sketched a road map toward a longtime goal: development of autonomous, or self-driving, next-generation research laboratories. 

Hugh O'Neil, director or ORNL's Center for Structural Molecular Biology is sitting in the lab on a stool, hand on desk with glasses on. There are lab related items blurred in the foreground.

Hugh O’Neill’s lifelong fascination with the complexities of the natural world drives his research at ORNL, where he’s using powerful neutron beams to dive deep into the microscopic realm of biological materials and unlock secrets for better production of domestic biofuels and bioproducts.

Photo is a graphical representation of lithium ions (glowing orbs) move through a diffusion gate (gold triangle) in a solid-state electrolyte

A team of scientists led by a professor from Duke University discovered a way to help make batteries safer, charge faster and last longer. They relied on neutrons at ORNL to understand at the atomic scale how lithium moves in lithium phosphorus sulfur chloride, a promising new type of solid-state battery material known as a superionic compound. 

Autonomous Configurable Component Evaluation Power Test platform, called ACCEPT, enabling automated characterization of semiconductor devices.

Researchers at 91°µÍø have developed a new automated testing capability for semiconductor devices, which is newly available to researchers and industry partners in the Grid Research Integration and Deployment Center.

Man is flying drone in hurricane aftermath, holding the controller

During Hurricanes Helene and Milton, ORNL deployed drone teams and the Mapster platform to gather and share geospatial data, aiding recovery and damage assessments. ORNL's EAGLE-I platform tracked utility outages, helping prioritize recovery efforts. Drone data will train machine learning models for faster damage detection in future disasters. 

Researcher Maximiliano Ferrari is kneeling down next to an emulator in the networked microgrids laboratory at the Grid Research Integration and Deployment Center

Maximiliano Ferrari, a researcher in the Grid Systems Architecture group at the Department of Energy’s 91°µÍø, has been elevated to prestigious senior membership in the Institute of Electrical and Electronics Engineers. 

ORNL researcher is sitting on a desk with his hands crossed, three screens behind him depicting work in satellites and space. Pictures on the left and right are orange in color while the middle photo is blue and reflects an image from space

From during his early years at NASA to his current role a researcher and group leader, Peter Fuhr has pushed the boundaries of optical and sensor technology. Fuhr’s path is marked by wacky creativity that can’t confine itself to challenges in a single field. No idea is too far out to try out — and so many of them work that Fuhr has a host of inventions and start-ups under his belt.