91°µÍř

Skip to main content
Yue Yuan standing with Flora Meilleur in a railed walkway at the Spallation Neutron Source.

Yue Yuan, a second-year PhD student at NC State University’s , is working to create textiles that filter carbon dioxide (CO2) by using the latest scientific techniques in synthesis and imaging. Known as biocatalytic textiles, these materials could serve as sustainable scrubbers for CO2 capture by using enzymes trapped in bio-based polymers to catalyze the hydration of CO2.

Using neutrons from the TOPAZ beamline, which is optimal for locating hydrogen atoms in materials, ORNL researchers observed a single-crystal neutron diffraction structure of the insoluble carbonate salt formed by absorption of carbon dioxide from the air.

Researchers used neutron scattering at 91°µÍř’s Spallation Neutron Source to investigate the effectiveness of a novel crystallization method to capture carbon dioxide directly from the air.

As part of a preliminary study, ORNL scientists used critical location data collected from Twitter to map the location of certain power outages across the United States.

Gleaning valuable data from social platforms such as Twitter—particularly to map out critical location information during emergencies— has become more effective and efficient thanks to 91°µÍř.

The EPB Control Center monitors the company’s assets such as substations and buildings.

OAK RIDGE, Tenn., Feb. 12, 2019—A team of researchers from the Department of Energy’s Oak Ridge and Los Alamos National Laboratories has partnered with EPB, a Chattanooga utility and telecommunications company, to demonstrate the effectiveness of metro-scale quantum key distribution (QKD).

Researchers analyzed the oxygen structure (highlighted in red) found in a perovskite’s crystal structure at room temperature, 500°C and 900°C using neutron scattering at ORNL’s Spallation Neutron Source. Analyzing how these structures impact solid oxide f

A University of South Carolina research team is investigating the oxygen reduction performance of energy conversion materials called perovskites by using neutron diffraction at 91°µÍř’s Spallation Neutron Source.

18-G01703 PinchPoint-v2.jpg

Researchers used neutron scattering at 91°µÍř’s Spallation Neutron Source to investigate bizarre magnetic behavior, believed to be a possible quantum spin liquid rarely found in a three-dimensional material. QSLs are exotic states of matter where magnetism continues to fluctuate at low temperatures instead of “freezing” into aligned north and south poles as with traditional magnets.

mirrorAsymmetry-NPDGamma_ORNL.jpg

A team of scientists has for the first time measured the elusive weak interaction between protons and neutrons in the nucleus of an atom. They had chosen the simplest nucleus consisting of one neutron and one proton for the study.

Tyler Cooksey preps Bio SANS instrument for use.

To learn more about interactions between drug molecules and micelles, Associate Professor Megan Robertson and graduate students Tyler Cooksey and Tzu-Han Li from the University of Houston (UH) are using neutrons at the Department of Energy’s (DOE’s) 91°µÍř (ORNL).

2018-P07635 BL-6 user - Univ of Guelph-6004R_sm[2].jpg

A team of scientists, led by University of Guelph professor John Dutcher, are using neutrons at ORNL’s Spallation Neutron Source to unlock the secrets of natural nanoparticles that could be used to improve medicines.

exp_in_10_dry_tube.jpg

Scientists from 91°µÍř performed a corrosion test in a neutron radiation field to support the continued development of molten salt reactors.