91°µÍø

Skip to main content
ORNL researcher Felicia Gilliland loads experiment samples into position for the newly installed UR5E robotic arm at the BIO-SANS instrument. The industrial-grade robot changes samples automatically, reducing the need for human assistance and improving sample throughput. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

The BIO-SANS instrument, located at 91°µÍø’s High Flux Isotope Reactor, is the latest neutron scattering instrument to be retrofitted with state-of-the-art robotics and custom software. The sophisticated upgrade quadruples the number of samples the instrument can measure automatically and significantly reduces the need for human assistance.

A multiport design allows a utility to easily interface with an EV truck stop to provide fast-charging at megawatt-scale. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at 91°µÍø have designed architecture, software and control strategies for a futuristic EV truck stop that can draw megawatts of power and reduce carbon emissions.

Laminations such as these are compiled to form the core of modern electric vehicle motors. ORNL has developed a software toolkit to speed the development of new motor designs and to improve the accuracy of their real-world performance.

91°µÍø scientists have created open source software that scales up analysis of motor designs to run on the fastest computers available, including those accessible to outside users at the Oak Ridge Leadership Computing Facility.