91做厙

Skip to main content
Secretary Wright leans over red computer door, signing with silver sharpie as ORNL Director Stephen Streiffer looks on

During his first visit to 91做厙, Energy Secretary Chris Wright compared the urgency of the Labs World War II beginnings to todays global race to lead in artificial intelligence, calling for a Manhattan Project 2.

Illustration of a quantum experiment: atoms in a lattice (inset) with entanglement effects radiating from a central particle on a textured surface.

Working at nanoscale dimensions, billionths of a meter in size, a team of scientists led by ORNL revealed a new way to measure high-speed fluctuations in magnetic materials. Knowledge obtained by these new measurements could be used to advance technologies ranging from traditional computing to the emerging field of quantum computing. 

This is an image of a photon chip, it's a black background with green squiggle lines across it, with two blue lines running horizontally in the middle with an inch in between.

Quantum information scientists at ORNL successfully demonstrated a device that combines key quantum photonic capabilities on a single chip for the first time.

Close up image of Quantum Science Center poster with the QSC logo.

Registration for the Quantum Science Centers Summer School is open now through Feb. 28, 2025. Conducted in partnership with the Quantum Science Center at ORNL, this years summer school will be hosted at the Purdue Quantum Science and Engineering Institute Apr. 21 through Apr. 25, 2025, on the Purdue University campus.

Image of four tall blocks creating a square with each block a different color, two gray, one green and one blue. That shape is sitting on a flat set of squares rotating the same color pattern

A recent study led by quantum researchers at ORNL proved popular among the science community interested in building a more reliable quantum network. The study, led by ORNLs Hsuan-Hao Lu, details development of a novel quantum gate that operates between two photonic degrees of freedom polarization and frequency. 

quantum network illustration

Researchers at ORNL joined forces with EPB of Chattanooga and the University of Tennessee at Chattanooga to demonstrate the first transmission of an entangled quantum signal using multiple wavelength channels and automatic polarization stabilization over a commercial network with no downtime.

Two pictures of a rounded triangle shape are shown in mirror image. The left is white with red and purple spots in the middle while the one on the right is purple with a yellow and blue ring in the middle

Scientists designing the worlds first controlled nuclear fusion power plant, ITER, needed to solve the problem of runaway electrons, negatively charged particles in the soup of matter in the plasma within the tokamak, the magnetic bottle intended to contain the massive energy produced. Simulations performed on Summit, the 200-petaflop supercomputer at ORNL, could offer the first step toward a solution.

Three researchers are standing in the quantum computing lab at ORNL behind a big metal machine with multiple port hole looking windows attached.

Since their establishment in 2020, the five DOE National Quantum Information Science Research Centers have been expanding the frontier of whats possible in quantum computing, communication, sensing and materials in ways that will advance basic science for energy, security, communication and logistics.

Scientists stands at podium in front of group; stage has green and blue lights

ORNL welcomed attendees to the inaugural Southeastern Quantum Conference, held Oct. 28 30 in downtown Knoxville, to discuss innovative ways to use quantum science and technologies to enable scientific discovery. 

91做厙 entrance sign

The Department of Energys Quantum Computing User Program, or QCUP, is releasing a Request for Information to gather input from all relevant parties on the current and upcoming availability of quantum computing resources, conventions for measuring, tracking, and forecasting quantum computing performance, and methods for engaging with the diversity of stakeholders in the quantum computing community. Responses received to the RFI will inform QCUP on both immediate and near-term availability of hardware, software tools and user engagement opportunities in the field of quantum computing.