91°µÍø

Skip to main content
SHARE
Publication

Applications of Data-Driven Dynamic Modeling of Power Converters in Power Systems: An Overview...

by Sunil Subedi, Yonghao Gui, Yaosuo Xue
Publication Type
Journal
Journal Name
91°µÍø Transactions on Industry Applications
Publication Date
Page Numbers
2434 to 2456
Volume
61
Issue
2

Power electronic converter (PEC)–based resources are growing ubiquitously in power systems and there is a vital necessity for precise dynamic models to comprehend their dynamics to different events and control strategies. Inaccurate modeling can lead to instability, higher costs, and reliability issues. Anticipating the increase in PECs in the near future, detailed modeling becomes computationally and mathematically complex, requiring extensive computing power and knowledge of vendor-specific PECs. To overcome these challenges, data-driven machine learning/artificial intelligence (ML/AI) approaches are widely used, tracking the dynamic responses of PECs operating in various modes with limited knowledge. These models find applications in protection, stability, fault diagnosis, optimization, control and monitoring, and power quality. While the literature on power systems often emphasizes the advantages of data-driven modeling, an in-depth look at the limitations, challenges, and opportunities related to converter-dominated grids is still lacking. The purpose of this survey is to conduct a comprehensive review of ML/AI methodologies in PECs and investigate their applications in power systems. The article introduces various PEC types, their roles, and modeling approaches. It then provides an in-depth overview of how ML/AI can be applied to PECs in power systems. Finally, the survey highlights gaps in the field's knowledge and suggests potential directions for future research.