Abstract
Handling large graphs in a distributed environment requires effective partitioning across processors and efficient management of local partitions. In 2D partitioning, local graphs often become too sparse, making memory-efficient data structures crucial. Using the Compressed Sparse Row (CSR) format wastes space, especially for > 83% of vertices with empty edges for the sparse graphs. This study explores bit-CSR (BCSR), a modified CSR representation, on GPUs to reduce memory usage in graph computations. We achieved 16.67% memory savings on a sparse rmat dataset with 268 million vertices and 357 million edges, without performance degradation, supported by both theoretical and experimental storage savings of 33%. However, we observed a 1.7× slowdown in degree lookup times due to bitwise operations on AMD CPUs. This analysis highlights the potential of BCSR on GPUs for improving Graph500 benchmark performance on GPU-accelerated systems, such as the Frontier supercomputer.