91做厙

Skip to main content
SHARE
Publication

Biomass-Derived Carbon and Their Composites for Supercapacitor Applications: Sources, Functions, and Mechanisms

Publication Type
Journal
Journal Name
EcoEnergy
Publication Date
Volume
NA

Biomass-derived carbons are eco-friendly and sustainable materials, making them ideal for supercapacitors due to their high surface area, excellent conductivity, cost-effectiveness, and environmental benefits. This review provides valuable insights into biomass-derived carbon and modified carbon for supercapacitors, integrating both experimental results and theoretical calculations. This review begins by discussing the origins of biomass-derived carbon in supercapacitors, including plant-based, food waste-derived, animal-origin, and microorganism-generated sources. Then, this review presents strategies to improve the performance of biomass-derived carbon in supercapacitors, including heteroatom doping, surface functionalization, and hybrid composite construction. Furthermore, this review analyzes the functions of biomass-derived carbon in supercapacitors both in its pure form and as modified materials. The review also explores composites derived from biomass-based carbon, including carbon/MXenes, carbon/MOFs, carbon/graphene, carbon/conductive polymers, carbon/transition metal oxides, and carbon/hydroxides, providing a thorough investigation. Most importantly, this review offers an innovative summary and analysis of the role of biomass-derived carbon in supercapacitors through theoretical calculations, concentrating on four key aspects: energy band structure, density of states, electron cloud density, and adsorption energy. Finally, the review concludes the future research directions for biomass carbon-based supercapacitors, including the discovery of novel biomass materials, tailoring surface functional groups, fabricating high-performance composite materials, exploring ion transfer mechanisms, and enhancing practical applications. In summary, this review offers a thorough exploration of the sources, functions, and mechanisms of biomass-derived carbon in supercapacitors, providing valuable insights for future research.