91°µÍø

Skip to main content
SHARE
Publication

Biospheric feedback effects in a synchronously coupled model of human and Earth systems

Publication Type
Journal
Journal Name
Nature Climate Change
Publication Date
Conference Date
-

Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing, . While historical data sets are available to inform past and current climate analyses, , assessments of future climate change have relied on projections of energy and land use from energy–economic models, constrained by assumptions about future policy, land-use patterns and socio-economic development trajectories. Here we show that the climatic impacts on land ecosystems drive significant feedbacks in energy, agriculture, land use and carbon cycle projections for the twenty-first century. We find that exposure of human-appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low–mid-range forcing scenario. The feedbacks between climate-induced biospheric change and human system forcings to the climate system—demonstrated here—are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy–economic models to ESMs used to date, , .