91°µÍø

Skip to main content
SHARE
Publication

Deployment of ADTimePix3 areaDetector Driver at Neutron and X-ray User Facilities

Publication Type
Conference Paper
Book Title
International Conference on Accelerator and Large Experimental Physics Control Systems (19th)
Publication Date
Page Numbers
90 to 94
Publisher Location
Geneva, Switzerland
Conference Name
ICALEPCS 2023: International Conference on Accelerator and Large Experimental Physics Control Systems
Conference Location
Cape Town, South Africa
Conference Sponsor
iThemba Labs
Conference Date
-

TimePix3 is a 65k hybrid pixel readout chip with simultaneous Time-of-Arrival (ToA) and Time-over-Threshold (ToT) recording in each pixel*. The chip operates without a trigger signal with a sparse readout where only pixels containing events are read out. The flexible architecture allows 40 MHits/s/cm² readout throughput, using simultaneous readout and acquisition by sharing readout logic with transport logic of superpixel matrix formed using 2x4 structure. The chip ToA records 1.5625 ns time resolution. The X-ray and charged particle events are counted directly. However, indirect neutron counts use 6Li fission in a scintillator matrix, such as ZnS(Ag). The fission space-charge region is limited to 5-9 um. A photon from scintillator material excites a photocathode electron, which is further multiplied in dual-stack MCP. The neutron count event is a cluster of electron events at the chip. We report on the EPICS areaDetector** ADTimePix3 driver that controls Serval*** using json commands. The driver directs data to storage and to a real-time processing pipeline and configures the chip. The time-stamped data are stored in raw .tpx3 file format and passed through a socket where the clustering software identifies individual neutron events. The conventional 2D images are available as images for each exposure frame, and a preview is useful for sample alignment. The areaDetector driver allows integration of time-enhanced capabilities of this detector into SNS beamlines controls and unprecedented time resolution.