91

Skip to main content
SHARE
Publication

Design and Analysis of the Open-Surface Slow Li Flow Divertor and Comparison to the Fast Li Flow Divertor...

by Yuchen Jiang, Sunday C Aduloju, Sergey Y Smolentsev
Publication Type
Conference Paper
Journal Name
Fusion Science and Technology
Publication Date
Page Numbers
1 to 21
Volume
TBD
Conference Name
26th Technology of Fusion Energy Meeting (TOFE 2024)
Conference Location
Madison, Wisconsin, United States of America
Conference Sponsor
ANS
Conference Date
-

In the ongoing U.S. project, “Liquid Metal Plasma Facing Components,” sponsored by the U.S. Department of Energy, efforts have been taken to develop two open-surface divertor designs for the Fusion Nuclear Science Facility using liquid lithium (Li) as a heat and particle flux removal media. The main focus of this study is the design and analysis of a slow (~1 mm/s) and thin (<1 mm) open-surface Li flow divertor with a Li-cooled substrate, which is then compared with an earlier design of a fast (up to 10 m/s) and thick (~0.5 cm) Li flow divertor with the substrate cooled with helium. The slow Li flow divertor design is based on the original LiWall concept developed at the Princeton Plasma Physics Laboratory. Such a thin and slow Li layer can remove the particle flux by reducing the recycling flux, while the heat flux is removed mainly through the heat sink located beneath.

In the present study, the heat sink is provided through a Li cooling flow inside the substrate of reduced activation ferritic/martensitic steel. By performing a multiphysics analysis with COMSOL that included liquid-metal magnetohydrodynamics (MHD), heat transfer, and structural mechanics, the impact of various factors on the divertor heat removal capability, such as Li flow velocity, MHD effects, and inlet velocity boundary condition, were examined. Based on comparisons of the two divertor designs, it was shown that the fast-flow divertor significantly outperformed the slow-flow design, whose heat removal capability was limited to ~1 to 2 MW/m2.