Abstract
The US Department of Energy’s National Nuclear Security Administration (NNSA) is participating in the Global Threat Reduction Initiative to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. As an integral part of one of NNSA’s subprograms, Reduced Enrichment for Research and Test Reactors, HFIR is being converted from the present HEU core to a low enriched uranium (LEU) core with less than 20% of U-235 by weight. Because of HFIR’s importance for condensed matter research in the United States, its conversion to a high-density, U-Mo-based, LEU fuel should not significantly impact its existing performance. Furthermore, cost and availability considerations suggest making only minimal changes to the overall HFIR facility. Therefore, the goal of this conversion program is only to substitute LEU for the fuel type in the existing fuel plate design, retaining the same number of fuel plates, with the same physical dimensions, as in the current HFIR HEU core. Because LEU-specific testing and experiments will be limited, COMSOL Multiphysics was chosen to provide the needed simulation capability to validate against the HEU design data and previous calculations, and predict the performance of the proposed LEU fuel for design and safety analyses. To achieve it, advanced COMSOL-based multiphysics simulations, including computational fluid dynamics (CFD), are being developed to capture the turbulent flows and associated heat transfer in fine detail and to improve predictive accuracy [2].