Abstract
Quantum machine learning (QML) algorithms have obtained great relevance in the machine learning (ML) field due to the promise of quantum speedups when performing basic linear algebra subroutines (BLAS), a fundamental element in most ML algorithms. By making use of BLAS operations, we propose, implement and analyze a quantum k-means (qk-means) algorithm with a low time complexity of O(NKlog(D)I/C) to apply it to the fundamental problem of discriminating quantum states at readout. Discriminating quantum states allows the identification of quantum states |0⟩ and |1⟩ from low-level in-phase and quadrature signal (IQ) data, and can be done using custom ML models. In order to reduce dependency on a classical computer, we use the qk-means to perform state discrimination on the IBMQ Bogota device and managed to find assignment fidelities of up to 98.7% that were only marginally lower than that of the k-means algorithm. We also performed a cross-talk benchmark on the quantum device by applying both algorithms to perform state discrimination on a combination of quantum states and using Pearson Correlation coefficients and assignment fidelities of discrimination results to conclude on the presence of cross-talk on qubits. Evidence shows cross-talk in the (1, 2) and (2, 3) neighboring qubit couples for the analyzed device.