91°µÍø

Skip to main content
SHARE
Publication

Integrated edge-to-exascale workflow for real-time steering in neutron scattering experiments

Publication Type
Journal
Journal Name
Structural Dynamics
Publication Date
Page Number
064303
Volume
11
Issue
6

We introduce a computational framework that integrates artificial intelligence (AI), machine learning, and high-performance computing to enable real-time steering of neutron scattering experiments using an edge-to-exascale workflow. Focusing on time-of-flight neutron event data at the Spallation Neutron Source, our approach combines temporal processing of four-dimensional neutron event data with predictive modeling for multidimensional crystallography. At the core of this workflow is the Temporal Fusion Transformer model, which provides voxel-level precision in predicting 3D neutron scattering patterns. The system incorporates edge computing for rapid data preprocessing and exascale computing via the Frontier supercomputer for large-scale AI model training, enabling adaptive, data-driven decisions during experiments. This framework optimizes neutron beam time, improves experimental accuracy, and lays the foundation for automation in neutron scattering. Although real-time experiment steering is still in the proof-of-concept stage, the demonstrated potential of this system offers a substantial reduction in data processing time from hours to minutes via distributed training, and significant improvements in model accuracy, setting the stage for widespread adoption across neutron scattering facilities and more efficient exploration of complex material systems.