Abstract
Five variants of nano-infiltration transient eutectic (NITE) SiC were prepared using nanopowder feedstock and sintering additive contents of <10 wt%. The dense monolithic materials were subsequently irradiated to 2 and 10 dpa in a mixed spectrum fission reactor at nominally 400 and 700簞C. The evolution in swelling, strength, and thermal conductivity of these materials were examined after irradiation, where in all cases properties saturated at < 2dpa, without appreciable change for further irradiation to 10 dpa. Swelling behavior appeared similar to high-purity chemical vapor deposition (CVD) SiC within measurement uncertainty. The strength roughly doubled after irradiation. Thermal resistivity increase as a result of irradiation was ~20% higher when compared to CVD-SiC.