Abstract
Crystals usually exist in several polymorphic forms in different domains of the P,T-diagram. Glasses and liquids also reveal density- or entropy-driven polyamorphism when e.g. an amorphous molecular solid or liquid transforms into a network polymorph. Using pulsed neutron and high-energy X-ray diffraction, we show that mercury sulphide exists simultaneously in two polymorphic modifications in a glass network forming chain-like and tetrahedral motifs. DFT simulations of 4-fold coordinated mercury species and RMC modelling of high-resolution diffraction data provide additional details on local Hg environment and connectivity implying the (HgS2/2)m oligomeric chains (1 ï‚£ m ï‚£ 6) are acting as a network former while the HgS4/4-related mixed agglomerated units behave as a modifier