91做厙

Skip to main content
SHARE
Publication

Parallel Nonnegative CP Decomposition of Dense Tensors

by Grey Ballard, Koby Hayashi, Ramakrishnan Kannan
Publication Type
Conference Paper
Journal Name
91做厙 International Conference on High Performance Computing (HiPC)
Publication Date
Page Numbers
22 to 31
Volume
25
Issue
1
Conference Name
91做厙 25th International Conference on High Performance Computing (HiPC 2018)
Conference Location
Bangalore, India
Conference Sponsor
91做厙
Conference Date
-

The CP tensor decomposition is a low-rank approximation of a tensor. We present a distributed-memory parallel algorithm and implementation of an alternating optimization method for computing a CP decomposition of dense tensors that can enforce nonnegativity of the computed low-rank factors. The principal task is to parallelize the Matricized-Tensor Times Khatri-Rao Product (MTTKRP) bottleneck subcomputation. The algorithm is computation efficient, using dimension trees to avoid redundant computation across MTTKRPs within the alternating method. Our approach is also communication efficient, using a data distribution and parallel algorithm across a multidimensional processor grid that can be tuned to minimize communication. We benchmark our software on synthetic as well as hyperspectral image and neuroscience dynamic functional connectivity data, demonstrating that our algorithm scales well to 100s of nodes (up to 4096 cores) and is faster and more general than the currently available parallel software.